Vol. 37, issue 04, article # 4

Laptinskiy K. A., Burikov S. A., Vervald A. M., Guskov A. A., Plastinin I. V., Sarmanova O. E., Utegenova L. S., Dolenko T. A. Estimation of the concentrations of harmful impurities in water using laser Raman spectroscopy and machine learning methods. // Optika Atmosfery i Okeana. 2024. V. 37. No. 04. P. 287–293. DOI: 10.15372/AOO20240404 [in Russian].
Copy the reference to clipboard

Abstract:

In the course of technological development of society, the problem of violation of the ecological state of the environment inevitably arises, in particular in water reservoirs. In order to proper respond to the changes in the concentrations of various pollutants in natural water reservoirs, it is necessary to develop an express remote method. The creation of such a method is possible on the basis of Raman spectroscopy. However, during its development, a large number of various difficulties arise, in particular regarding the method of preprocessing the obtained data. The paper presents the results of using machine learning methods to develop a remote method for determining the type and concentration of dissolved ions in aqueous media from Raman spectra. The use of artificial neural networks made it possible to identify and simultaneously determine the concentration of each of the eight ions (Zn2+, Cu2+, Li+, Fe3+, Ni2+, NH4+, SO42, and NO3) in a multicomponent aqueous mixture with errors, which meet the needs of environmental monitoring of natural and waste waters. A significant influence of the method of preprocessing Raman spectra on the result of solving the inverse spectroscopic problem is discovered. The results can be used for solution of the multiparameter inverse problem of qualitative and quantitative determination of ions in water.

Keywords:

Raman spectroscopy, wastewater diagnostics, machine learning method, spectra preprocessing, artificial neural network

References:

1. Zilov E.A. Gidrobiologiya i vodnaya ekologiya: ucheb. posobie. Irkutsk: Irkut. un-t, 2007. 147 p.
2. Tikhomirova V., Smirnova P. Zagryaznenie poverkhnostnykh i stochnykh vod Rossiiskoi Federatsii tyazhelymi metallami // Mezhdunar. nauch.-issled. zhurn. 2022. V. 10. P. 1–5.
3. Baktybaeva Z.B., Suleimanov R.A., Valeev T.K., Rakhmatullin N.R. Ekologo-gigienicheskaya otsenka zagryazneniya poverkhnostnykh i podzemnykh vod v Zaural'e respubliki Bashkortostan // Zdorov'e naseleniya i sreda obitaniya. 2017. V. 7, N 292. P. 14–17.
4. Costa M. Review of arsenic toxicity, speciation and polyadenylation of canonical histones // Toxic. Appl. Pharmacology. 2019. V. 375. P. 1–4.
5. Azevedo E., Dias C., Dantas R., Sadok D., Fernandes S., Simoes R., Kamienski C. Profiling core operations for elasticity in cloud environments // 2012 IEEE Latin America Conference on Cloud Computing and Communications (LatinCloud), Porto Alegra, Brazil, 2012. P. 43–48.
6. Guo H., Liu H., Wu H., Cui H., Fang J., Zuo Z., Deng J., Li Y., Wang X., Zhao L. Nickel carcinogenesis mechanism: DNA damage // Intern. J. Mol. Sci. 2019. V. 20, N 19. P. 4690.
7. Rehman K., Fatima F., Waheed I., Akash M. Prevalence of exposure of heavy metals and their impact on health consequences // J. Cell. Biochem. 2017. V. 119, N 1. P. 157–184.
8. Cobbina S., Chen Y., Zhou Z., Wu X., Zhao T., Zhang Z., Feng W., Wang W., Li Q., Wu X., Yang L. Toxicity assessment due to sub-chronic exposure to individual and mixtures of four toxic heavy metals // J. Hazard. Mat. 2015. V. 294. P. 109–120.
9. Li Z., Deen M., Kumar S., Selvaganapathy P. Raman spectroscopy for in-line water quality monitoring – instrumentation and potential // Sensors. 2014. V. 14, N 9. P. 17275–17303.
10. Li Z., Wang J., Li D. Applications of Raman spectroscopy in detection of water quality // Appl. Spectrosc. Rev. 2015. V. 51, N 4. P. 333–357.
11. Shamanaev V.S. Gidroopticheskie signaly polyarizatsionnogo samoletnogo lidara pri zondirovanii odnorodnoi tolshchi morskoi vody // Optika atmosf. i okeana. 2020. V. 33, N 7. P. 516–521; Shamanaev V. Hydrooptical signals of an airborne polarization lidar for sensing the homogeneous sea water depth // Atmos. Ocean. Opt. 2020. V. 33. P. 616–621.
12. Klimkin A.V., Karapuzikov A.A., Kokhanenko G.P., Kuryak A.N., Osipov K.Yu., Ponomarev Yu.N., Chzhan Sh. Ispol'zovanie dlinnovolnovogo diapazona dlya distantsionnogo zondirovaniya atmosfernogo aerozolya // Optika atmosf. i okeana. 2020. V. 33, N 3. С. 205–208; Klimkin A., Karapuzikov A., Kokhanenko G., Kuryak A., Osipov K., Ponomarev Yu., Zhang S. Use of the long-wave range for remote sensing of atmospheric aerosols // Atmos. Ocean. Opt. 2020. V. 33. P. 383–386.
13. Patsaeva S.V., Dolenko T.A., Burikov S.A., Yuzhakov V.I. Distantsionnoe opredelenie soderzhaniya organicheskikh rastvoritelei v binarnykh smesyakh metodom spektroskopii kombinatsionnogo rasseyaniya // Optika atmosf. i okeana. 2014. V. 27, N 4. P. 284–290; Patsaeva S.V., Dolenko T.A., Burikov S.A., Yuzhakov V.I. Remote measurements of concentration of organic solvents in binary mixtures using Raman spectroscopy // Atmos. Ocean. Opt. 2014. V. 27, N 4. P. 291–296.
14. Mosier-Boss P., Lieberman S. Detection of nitrate and sulfate anions by normal raman spectroscopy and SERS of cationic-coated, silver substrates // Appl. Spectrosc. 2000. V. 54, N 8. P. 1126–1135.
15. Burikov S., Dolenko T., Velikotnyi P., Sugonyaev A., Fadeev V. The effect of hydration of ions of inorganic salts on the shape of the Raman stretching band of water // Opt. Spectrosc. 2005. V. 98, N 2. P. 235–239.
16. Ahmed M., Namboodiri V., Singh A., Mondal J., Sarkar S. How ions affect the structure of water: A combined Raman spectroscopy and multivariate curve resolution study // J. Phys. Chem. B. 2013. V. 117, N 51. P. 16479–16485.
17. Laptinskii K., Burikov S., Sarmanova O., Verval'd A., Utegenova L., Plastinin I., Dolenko T. Diagnostika vrednykh primesei v vodnykh sredakh s pomoshch'yu spektroskopicheskikh metodov i algoritmov mashinnogo obucheniya // Opt. i spektroskop. 2023. V. 131, N 6. P. 810–816.
18. Qi Y., Hu D., Jiang Y., Wu Z., Zheng M., Chen E., Liang Y., Sadi M., Zhang K., Chen Y. Recent progresses in machine learning assisted Raman spectroscopy // Adv. Opt. Mat. 2023. V. 11, N 14.
19. Zhang W., Kasun L., Wang Q., Zheng Y., Lin Z. A review of machine learning for near-infrared spectroscopy // Sensors. 2022. V. 22, N 24. P. 9764.
20. Dolenko S., Burikov S., Dolenko T., Efitorov A., Gushchin K., Persiantsev I. Neural network approaches to solution of the inverse problem of identification and determination of partial concentrations of salts in multi-сomponent water solutions // Lec. Notes Comp. Sci. 2014. V. 8681. P. 805–812.
21. Dolina L. Sovremennaya tekhnika i tekhnologii dlya ochistki stochnykh vod ot solei tyazhelykh metallov. Dnepropetrovsk: Kontinent, 2008. 227 p.
22. Dolenko T., Burikov S., Vervald E., Efitorov A., Laptinskiy K., Sarmanova O., Dolenko S. Improvement of reliability of molecular DNA computing: Solution of inverse problem of Raman spectroscopy using artificial neural networks // Laser Phys. 2017. V. 27, N 2. P. 025203.