Vol. 37, issue 03, article # 8

Smalikho I. N., Banakh V. A., Sherstobitov A. M. Influence of an internal gravity wave on the shape of the curve for the spectral density of the vertical component of wind velocity. // Optika Atmosfery i Okeana. 2024. V. 37. No. 03. P. 244–253. DOI: 10.15372/AOO20240308 [in Russian].
Copy the reference to clipboard

Abstract:

Issues of turbulent wave interaction in the atmospheric boundary layer (ABL) have not yet been sufficiently studied. In particular, the question of the influence of an internal gravity wave (IGW) arising in a thermally stable ABL on the spectrum of turbulent wind speed fluctuations remained open. In this work, using pulsed coherent Doppler lidar measurements, the influence of IGW on the shape of the curve for the spectral density of the vertical component of the wind velocity is studied. It has been established that IGW causes a significant change in the shape of the wind speed spectrum curve at frequencies below the boundary of the inertial turbulence interval. In this case, in the interval between the IGW frequency and the lower limit of the inertial interval, the frequency dependence of the spectrum is close to a power law. By analyzing 700 lidar estimates of vertical wind speed spectra, it was found that for such a frequency interval the exponent is on average equal to -3. The results of the work can be used to improve algorithms for numerical simulation of thermally stable ABL.

Keywords:

coherent Doppler lidar, wind turbulence, internal gravity wave, spectral density, exponent

Figures:

References:

1. Lamli Dzh., Panovskii G. Struktura atmosfernoi turbulentnosti. M.: Mir, 1966. 264 p.
2. Monin A.S., Yaglom A.M. Statisticheskaya gidromekhanika. Pt. 2. M.: Nauka, 1967. 720 p.
3. Zilitinkevich S.S. Dinamika pogranichnogo sloya atmosfery. L.: Gidrometeoizdat, 1970. 292 p.
4. Laikhtman D.L. Fizika pogranichnogo sloya atmosfery. L.: Gidrometeoizdat, 1970. 342 p.
5. Vinnichenko N.K., Pinus N.Z., Shmeter S.M., Shur G.N. Turbulentnost' v svobodnoi atmosfere. L.: Gidrometeoizdat, 1976. 288 p.
6. Nieuwstadt F.T.M., Van Dop H. Atmospheric Turbulence and Air Pollution Modelling: A Course Held in the Hauque, 21–25 September, 1981. Dordrecht, 1982. 351 p.
7. Byzova N.L., Ivanov V.N., Garger E.K. Turbulentnost' v pogranichnom sloe atmosfery. L.: Gidrometeoizdat, 1989. 263 p.
8. Banta R.M., Newsome R.K., Lundguist J.K., Pichugina Y.L., Coulter R.L., Mahrt L. Nocturnal low-level jet characteristics over Kansas during CASES-99 // Bound.-Lay. Meteorol. 2002. V. 105. P. 221–252.
9. Edwards J.M., Beljaars A.C.M., Holstag A.A.M., Lock A.P. Representation of boundary-layer processes in numerical weather prediction and climate models // Bound.-Lay. Meteorol. 2020. V. 177. P. 511–539.
10. Kolmogorov A.N. Lokal'naya struktura turbulentnosti v neszhimaemoi vyazkoi zhidkosti pri ochen' bol'shikh chislakh Reinol'dsa // Dokl. AN SSSR. 1941. V. 30, N 4. P. 299–303.
11. Obukhov A.M. O raspredelenii energii v spektre turbulentnogo potoka // Izv. AN SSSR. Ser. geogr. i geofiz. 1941. N 4–5. P. 453–463.
12. Lamley J.P. The spectrum of nearly inertial turbulence in a stably stratified fluid // J. Atmos. Sci. 1964. V. 21, N 1. P. 99–102.
13. Bolgiano R.J. Structure of turbulence in stratified media // J. Geophys. Res. 1962. V. 67, N 8. P. 3015–3023.
14. Monin A.S. O spektre turbulentnosti v temperaturno-neodnorodnoi atmosfere // Izv. AN SSSR. Ser. geofiz. 1962. N 3. P. 397–407.
15. Shur G.N. Eksperimental'nye issledovaniya energeticheskogo spektra atmosfernoi turbulentnosti // Trudy TSAO. 1962. Iss. 43. P. 79–91.
16. Kameyama S., Ando T., Asaka K., Hirano Y., Wadaka S. Compact all-fiber pulsed coherent Doppler lidar system for wind sensing // Appl. Opt. 2007. V. 46, N 11. P. 1953–1962.
17. Pierson G., Davies F., Collier C. An analysis of performance of the UFAM Pulsed Doppler lidar for the observing the boundary layer // J. Atmos. Ocean. Technol. 2009. V. 26, N 2. P. 240–250.
18. Dolfi-Bouteyre A., Canat G., Valla M., Augere B., Besson C., Goular D., Lombard L., Cariou J.P., Durecu A., Fleury D., Bricteux L., Brousmiche S., Pulsed 1.5-mm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier // IEEE J. Sel. Top. Quantum. Electron. 2009. V. 15. P. 441–450.
19. Wu S., Liu B., Liu J., Zhai X., Feng C., Wang G., Zhang H., Yin J., Wang X., Li R., Gallacher D. Wind turbine wake visualization and characteristics analysis by Doppler lidar // Opt. Express. 2016. V. 24, N 10. DOI: 10.1364/OE.24.00A762.
20. Banakh V.A., Smalikho I.N. Lidar observations of atmospheric internal waves in the boundary layer of atmosphere on the coast of Lake Baikal // Atmos. Meas. Tech. 2016. V. 9, N 10. P. 5239–5248. DOI: 10.5194/amt-9-5239-2016.
21. Smalikho I.N., Banakh V.A. Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer // Atmos. Meas. Tech. 2017. V. 10, N 11. P. 4191–4208.
22. Banakh V.A., Smalikho I.N., Falits V.A. Estimation of the turbulence energy dissipation rate in the atmospheric boundary layer from measurements of the radial wind velocity by micropulse coherent Doppler lidar // Opt. Express. 2017. V. 25, N 19. P. 22679–22692.
23. Banakh V.A., Smalikho I.N. Lidar studies of wind turbulence in the stable atmospheric boundary layer // Remote Sens. 2018. V. 10, N 18. P. 1219. DOI: 10.3390/rs10081219.
24. Banakh V.A., Smalikho I.N. Lidar estimates of the anisotropy of wind turbulence in a stable atmospheric boundary layer // Remote Sens. 2019. V. 11, N 18. P. 2115. DOI: 10.3390/rs11182115.
25. Banakh V.A., Smalikho I.N., Falits A.V. Wind–temperature regime and wind turbulence in a stable boundary layer of the atmosphere: Case study // Remote Sens. 2020. V. 12. P. 955. DOI: 10.3390/rs12060955.
26. Smalikho I.N., Banakh V.A. Effect of wind transport of turbulent inhomogeneities on estimation of the turbulence energy dissipation rate from measurements by a conically scanning coherent Doppler lidar // Remote Sens. 2020. V. 12, N 17. P. 2802. DOI: 10.3390/rs12172802.
27. Banakh V.A., Smalikho I.N., Falits A.V. Estimation of the height of turbulent mixing layer from data of Doppler lidar measurements using conical scanning by a probe beam // Atmos. Meas. Tech. 2021. V. 14, N 2. P. 1511–1524.
28. Banakh V.A., Smalikho I.N., Falits A.V., Sherstobitov A.M. Estimating the parameters of wind turbulence from spectra of radial velocity measured by a pulsed Doppler lidar // Remote Sens. 2021. V. 13. P. 2071. DOI: 10.3390/rs13112071.