Vol. 36, issue 12, article # 4

Tentyukov M. P., Belan B. D., Simonenkov D. V., Patov S. A., Mikhailov V. I., Simonova G. V., Plyusnin S. N., Bobrov Yu. A. Lichen exometabolites as possible precursors of secondary organic aerosols. // Optika Atmosfery i Okeana. 2023. V. 36. No. 12. P. 982–990. DOI: 10.15372/AOO20231204 [in Russian].
Copy the reference to clipboard

Abstract:

Lichens are not only a bioindicator of air pollution, but they themselves, in turn, affect the chemical composition of the air. The results of studies of the qualitative composition of exometabolites in thalli of epiphytic lichens using the method of high-performance liquid chromatography are presented. A comparative analysis of the fractional composition of deposited aerosol matter in water washouts of lichens showed that it is characterized by a bimodal type of particle distribution. It is postulated that the appearance of the fine fraction is associated with the formation of secondary organic aerosols on the surface of epiphytic lichens. Their precursors are the products of photoactivated reactions between deposited aerosol matter and highly volatile organic compounds that arrive on the surface of lichens as a result of efflorescence. The mechanism of entry of secondary organic aerosols into the surface atmosphere under the influence of radiometric photophoresis is discussed.

Keywords:

aerosols, δ15N, δ13C, volatile organic compounds, lichen acids, chromatographic analysis, phenols, exometabolites, epiphytic lichens

References:

1. Gorshkov V.V. Ispol'zovanie epifitnykh lishainikov dlya indikatsii atmosfernogo zagryazneniya (Metodicheskie rekomendatsii). Apatity: Kol. nauch. tsentr., 1991. 46 p. Апатиты: Кол. науч. центр, 1991
2. Opekunova M.G. Bioindikatsiya zagryaznenii. SPb.: Izd-vo SPb. un-ta, 2016. 300 p.
3. Saniewski M., Wietrzyk-Pełka P., Zalewska T., Węgrzyn M.H. Current radioactive fallout contamination along a trans-European gradient assessed using terricolous lichens // Chemosphere. 2022. V. 304. DOI: 10.1016/j.chemosphere.2022.135281.
4. Byazrov L.G. Lishainiki v ekologicheskom monitoringe. M.: Nauchnyi mir, 2002. 336 p.
5. Conti M.E., Cecchetti G., Biological monitoring: Lichens as bioindicators of air pollution assessment – a review // Environ. Pollut. 2001. V. 114, N 3. P. 471–492. DOI: 10.1016/S0269-7491(00)00224-4.
6. Glasius M., Goldstein A.H. Recent discoveries and future challenges in atmospheric organic chemistry // Environ. Sci. Technol. 2016. V. 50. P. 2754–2764. DOI: 10.1021/acs.est.5b05105.
7. Peñuelas J., Staudt M. BVOCs and global change // Trends Plant Sci. 2010. V. 15. P. 133–144. DOI: 10.1016/j.tplants.2009.12.005.
8. Kulmala M. How particles nucleate and grow // Science. 2003. V. 302(5647). P. 1000–1001. DOI: 10.1126/science.1090848.
9. Kulmala M., Vehkamäki H., Petäjä T., Dal Maso M., Lauri A., Kerminen V.-M., Birmili W., McMurry P.H. Formation and growth rates of ultrafine atmospheric particles: A review of observations // J. Aerosol Sci. 2004. V. 35, N 2. P. 143–176. DOI: 10.1016/j.jaerosci.2003.10.003.
10. Petӓjӓ T., Tabakova K., Manninen A., Ezhova E., O’Connor E., Moisseev D., Sinclair V.A., Backman J., Levula J., Luoma K., Virkkula A., Paramonov M., Rӓty M., Ӓijӓlӓ M., Heikkinen L., Ehn M., Sipilӓ M., Yli-Juuti T., Virtanen A., Ritsche M., Hickmon N., Pulik G., Rosenfeld D., Worsnop D.R., Bӓck J., Kulmala M., Kerminen K.-M. Influence of biogenic emissions from boreal forests on aerosol – cloud interactions // Nat. Geosci. 2022. V. 15. P. 42–47. DOI: 10.1038/s41561-021-00876-0.
11. Dixon R., Strack D. Phytochemistry meets genome analysis, and beyond // Phytochemistry. 2003. V. 62. P. 815–816. DOI: 10.1016/S0031-9422(02)00712-4.
12. Lämke J.S., Unsicker S.B. Phytochemical variation in treetops: Causes and consequences for tree-insect herbivore interactions // Oecologia. 2018. V. 187. P. 377–388. DOI: 10.1007/s00442-018-4087-5.
13. Wink M. Introduction: Biochemistry, physiology, and ecological functions of secondary metabolites // Annu. Plant Rev. 2010. V. 40. P. 1–19.
14. Munnе́-Bosch S. Phenolic Acids: Composition, Applications and Health Benefits. New York: Nova Science Publishers, 2012. 243 p.
15. Edtbauer A., Pfannerstill E.Y., Florentino A.P.P., Barbosa C.G.G., Rodriguez-Caballero E., Zannoni N., Alves R.P., Wolff S., Tsokankunku A., Aptroot A., Sа́ M.D., de Araи́jo A.C., Sörgel M., de Oliveira S.M., Weber B., Williams J. Cryptogamic organisms are a substantial source and sink for volatile organic compounds in the Amazon region // Commun. Earth Environ. 2021. 2 (art. 258). DOI: 10.1038/s43247-021-00328-y.
16. Hanson D.T., Swanson S., Graham L.E., Sharkey T.D. Evolutionary significance of isoprene emission from mosses // Am. J. Bot. 1999. V. 86. P. 634–639. DOI: 10.2307/2656571.
17. Kesselmeier J. Exchange of short-chain oxygenated volatile organic compounds (VOCs) between plants and the atmosphere: A compilation of field and laboratory studies // J. Atmos. Chem. 2001. V. 39. P. 219–233. DOI: 10.1023/A:1010632302076.
18. Hramchenkova O.M. Lishainiki Hypogymnia physodes, Evernia prunastri, Cladonia arbuscula i Xanthoria parietina kak istochniki veshchestv s antibakterial'noi aktivnost'yu // Raznoobrazie rastitel'nogo mira. 2017. N 1 (9).
19. Pizňak M., Bačkor M. Lichens affect boreal forest ecology and plant metabolism // S. Afr. J. Bot. 2019. V. 124. P. 530–539. DOI: 10.1016/j.sajb.2019.06.025.
20. Yousuf S., Choudhary M.I., Atta-ur-Rahman. Lichens: Chemistry and biological activities // Stud. Nat. Prod. Chem. 2014. V. 43. P. 223–259. DOI: 10.1016/B978-0-444-63430-6.00007-2.
21. Atlas of Images of Thin Layer Chromatograms of Lichen Substances. 2015. URL: https://www.researchgate.net/ publication/282766279_Atlas_of_Images_of_Thin_Layer_Chromatograms_of_Lichen_Substances (last access: 29.11.2022).
22. Calla-Quispe E., Fuentes-Rivera H.L., Ramírez P., Martel C., Ibañez A.J. Mass spectrometry: A rosetta stone to learn how fungi interact and talk // Life-Basel. 2020. V. 10, N 22. DOI: 10.3390/life10060089.
23. Lindroth R. Atmospheric change, plant secondary metabolites and ecological interactions / G. Iason, M. Dicke, S. Hartley (eds.) The Ecology of Plant Secondary Metabolites: From Genes to Global Processes. Cambridge: Cambridge University Press, 2012. Ecological Reviews, P. 120–153. DOI: 10.1017/CBO9780511675751.008.
24. Sindelarova K., Granier C., Bouarar I., Guenther A., Tilmes S., Stavrakou T., Müller J.F., Kuhn U., Stefani P., Knorr W. Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years // Atmos. Chem. Phys. 2014. V. 14, N 17. P. 9317–9341. DOI: 10.5194/acp-14-9317-2014.
25. Holopainen J.K., Kivimäenpää M., Nizkorodov S.A. Plant-derived secondary organic material in the air and ecosystems // Trends Plant Sci. 2017. V. 22, N 9. P. 744–753. DOI: 10.1016/j.tplants.2017.07.004.
26. Chen W.H., Guenther A.B., Wang X.M., Chen Y.H., Gu D.S., Chang M., Zhou S.Z., Wu L.L., Zhang Y.Q. Regional to global biogenic isoprene emission responses to changes in vegetation from 2000 to 2015 // J. Geophys. Res.: Atmos. 2018. V. 123, N 7. P. 3757–3771.
27. Holopainen J.K., Virjamo V., Ghimire R.P., Blande J.D., Julkunen-Tiitto R., Kivimäenpää M. Climate change effects on secondary compounds of forest trees in the Northern Hemisphere // Front. Plant Sci. 2018. V. 9 (art. 1445), 10. DOI: 10.3389/fpls.2018.01445.
28. Kramshøj M., Vedel-Petersen I., Schollert M., Rinnan A., Nymand J., Ro-Poulsen H., Rinnan R. Large increases in Arctic biogenic volatile emissions are a direct effect of warming // Nat. Geosci. 2016. V. 9, N 5. P. 349–352. DOI: 10.1038/ngeo2692.
29. Yli-Juuti T., Mielonen T., Heikkinen L., Arola A., Ehn M., Isokääntä S., Keskinen H.-M., Kulmala M., Laakso A., Lipponen A., Luoma K., Mikkonen S., Nieminen T., Paasonen P., Petäjä T., Romakkaniemi S., Tonttila J., Kokkola H., Virtanen A. Significance of the organic aerosol driven climate feedback in the boreal area // Nat Commun. 2021. V. 12. P. 5637. DOI: 10.1038/s41467-021-25850-7.
30. Ryde I., Davie-Martin C.L., Li T., Naursgaard M.P., Rinnan R. Volatile organic compound emissions from subarctic mosses and lichens // Atmos. Environ. 2022. V. 290. DOI: 10.1016/j.atmosenv.2022.119357.
31. Nordin A., Moberg R., Tønsberg T., Vitikainen O., Dalsätt Å., Myrdal M., Snitting D., Ekman S. Santesson’s Checklist of Fennoskandian lichen-forming and lichenicolous Fungi. URL: http: //130.238.83.220/santesson/home.php.Evolutionsmussiet (last access: 19.05.2023).
32. Zhizn' rastenii: v 6 t. / Vodorosli. Lishainiki / pod red. prof. M.M. Gollerbakha. M.: Prosveshchenie, 1977. V. 3. 487 p.
33. Flora lishainikov Rossii: Biologiya, ekologiya, raznoobrazie, rasprostranenie i metody izucheniya lishainikov / otv. red. M.P. Andreev, D.E. Gimel'brant. M.; SPb.: Tovarishchestvo nauch. izd. KMK, 2014. 392 p.
34. Goryshina T.K. Ekologiya rastenii: ucheb. posobie. M.: Vysshaya shkola, 1979. 368 p.
35. Opredelitel' lishainikov Russia / otv. red. N.S. Golubkova. SPb.: Nauka, 1996. Iss. 6. Alektorievye, parmelievye, stereokaulonovye. 203 p. https://reallib.org/reader?file=545722&pg=4 (data obrashcheniya: 19.08.2023).
36. Harpukhaeva T.M. Sravnitel'noe opisanie apotetsiev vidov Evernia mesomorpha i Evernia esorediosa // Byulleten' Botanicheskogo sada-instituta DVO RAN. 2018. Iss. 19. P. 65–68. DOI: 10.17581/bbgi1908.
37. Andreev M.P., Akhti T., Gagarina L.V., Gimel'brant D.E. Flora lishainikov Rossii: Semeistvo Parmeliaceae. M.; SPb.: Tovarishchestvo nauch. izd. KMK, 2022. P. 54–56.
38. Belyi P.N. Lishainiki elovykh lesov Belarusi. Minsk: Belaruskaya navuka, 2016. 230 p.
39. Blazhei A., Shutyi L. Fenol'nye soedineniya rastitel'nogo proiskhozhdeniya. M.: Mir, 1977. 240 p.
40. Zaprometov M.N. Fenol'nye soedineniya: Распространение, метаболизм и функции в растениях. РАН, Ин-т физиологии растений им. К.А. Тимирязева. M.: Nauka, 1993. 271 p.
41. Giertych M.J., Karolewski P., de Temmerman L.O. Foliage age and pollution alter content of phenolic compounds and chemical elements in pinus nigra needles // Water, Air, & Soil Pollution. 1999. V. 110. Р. 363–377. DOI: 10.1023/A:1005009214988.
42. Ahajji A., Diouf P.N., Aloui F., Elbakali I., Perrin D., Merlin A., George B. Influence of heat treatment on antioxidant properties and colour stability of beech and spruce wood and their extractives // Wood Sci. Technol. 2009. V. 43, N 1. P. 69–83. DOI: 10.1007/s00226-008-0208-3.
43. Gosudarstvennyi doklad «O sostoyanii okruzhayushchei sredy Respubliki Komi v 2020 year»: gos. doklad / Minprirody Respubliki Komi [i dr.]; pod obshch. red. GBU RK «TFI RK». Syktyvkar: Minprirody Respubliki Komi, 2021. 165 p. URL: https://mpr. rkomi.ru/uploads/documents/gosdoklad_2020_elektronnaya_versiya_v2_2021-06-22_08-45-11.pdf. (data obrashcheniya: 2.12.2022).
44. Tyukavkina N.A., Baukov Yu.I. Bioorganicheskaya khimiya. M.: Drofa, 2004. 544 p.
45. Tentukov M.P., Mikhailov V.I., Timushev D.A., Belan B.D., Simonenkov D.V. Granulometricheskii sostav osevshego aerozol'nogo veshchestva i sootnoshenie fenol'nykh soedinenii v khvoe raznogo vozrasta // Optika atmosf. i okeana. 2021. V. 34, N 2. P. 122–128; Tentukov M.P., Mikhailov V.I., Timushev D.A., Belan B.D., Simonenkov D.V. Granulometric composition of settled aerosol material and ratio of phenolic compounds in different-age needles // Atmos. Ocean. Opt. 2021. V. 34, N 3. P. 222–228.
46. Tentyukov M.P., Belan B.D., Simonenkov D.V., Mikhailov V.I. Formirovanie vtorichnykh organicheskikh aerozolei na poverkhnosti khvoi i ikh postuplenie v polog zimnego lesa pod vozdeistviem radiometricheskogo fotoforeza // Optika atmosf. i okeana. 2022. V. 35, N 5. P. 916–923; Tentyukov M.P., Belan B.D., Simonenkov D.V., Mikhailov V.I. Generation of secondary organic aerosols on needle surfaces and their entry into the winter forest canopy under radiometric photophoresis // Atmos. Ocean. Opt. 2022. V. 35, N 5. P. 490–496.
47. Imada S., Acharya K., Yamanaka N. Short-term and diurnal patterns of salt secretion by Tamarix ramosissima and their relationships with climatic factors // J. Arid Environ. 2012. V. 83, N 8. P. 62–68. DOI: 10.1016/j.jaridenv.2012.03.006.
48. Singer A., Kirsten W.F.A., Buhmann C. A proposed fog deposition mechanism for the formation of salt efflorescences in the Mpumalanga highveld, Republic of South Africa // Water, Air, Soil Pollut. 1999. V. 109, N 1–4. P. 313–325.
49. Wieder K.R., Vile M.A., Vittf D.H., Scott K.D., Xu B., Quinn J.C., Albright C.M. Can plant or lichen natural abundance 15N ratios indicate the influence of oil sands N emissions on bogs? // J. Hydrology: Regional Studies. 2022. V. (2022) 101030. DOI: 10.1016/ j.ejrh.2022.101030.
50. Arshinov M.Yu., Belan B.D. Sutochnyi hod kontsentratsii mikrodispersnoi fraktsii aerozolya // Optika atmosf. i okeana. 2000. V. 13, N 11. P. 983–990.
51. Beresnev S.A., Kovalev F.D., Kochneva L.B., Runkov V.A, Suetin P.E., Cheremisin A.A. O vozmozhnosti fotoforeticheskoi levitatsii chastits v stratosfere // Optika atmosf. i okeana. 2003. V. 16, N 1. P. 52–57.
52. Beresnev S.A., Kochneva L.B., Suetin P.E., Zakharov V.I., Gribanov K.G. Fotoforez atmosfernykh aerozolei v pole teplovogo izlucheniya Zemli // Optika atmosf. i okeana. 2003. V. 16, N 5–6. P. 470–477.
53. Beresnev S.A., Kochneva L.B., Zakharov V.I., Gribanov K.G. Fotoforez sazhevykh aerozolei v pole teplovogo izlucheniya Zemli // Optika atmosf. i okeana. 2011. V. 24, N 7. P. 597–600.
54. Kaddes A., Fauconnier M.-L., Sassi K., Nasraoui B., Jijakli M.-H. Endophytic fungal volatile compounds as solution for sustainable agriculture // Molecules. 2019. V. 24(6). DOI: 10.3390/molecules24061065.
55. Arshinov M.Yu., Belan B.D., Davydov D.K., Ivlev G.A., Kozlov A.V., Kozlov A.S., Malyshkin S.B., Simonenkov D.V., Antokhin P.N. Nukleatsionnye vspleski v atmosfere boreal'noi zony Zapadnoi Sibiri. Part I. Klassifikatsiya i povtoryaemost' // Optika atmosf. i okeana. 2014. V. 27, N 9. P. 766–774.