Vol. 36, issue 11, article # 9

Foka S. Ch., Makarova M. V., Poberovsky A. V., Ionov D. V., Abakumov E. V. Analysis of mixing ratios of greenhouse carbon-containing gases at the atmospheric monitoring station of St. Petersburg State University. // Optika Atmosfery i Okeana. 2023. V. 36. No. 11. P. 934–941. DOI: 10.15372/AOO20231109 [in Russian].
Copy the reference to clipboard

Abstract:

In order to study temporal variations in the mixing ratios of greenhouse carbon-containing gases and factors influencing them, local measurements of CO2, CH4 (January 2013 – January 2020), and CO (January 2013 – January 2019) mixing ratios in atmospheric air at the St. Petersburg State University station are analyzed. For this analysis, the trend and seasonal oscillations are taken into account. Linear trends for CO2, CH4, and CO, which are 2.42 ppm/year (0.60%), 8.6 ppb/year (0.49%), and -3.8 ppb/year (-2.2%), respectively, are in a good agreement with independent estimates for both global/background changes and changes in urban area. The analysis of the CO/CO2 emission ratio confirmed that motor vehicles are the dominant anthropogenic source affecting the composition of atmospheric air in the area of the St. Petersburg State University monitoring station. The results presented in this work can be used for validation of atmospheric models, as well as for independent estimations of greenhouse gas fluxes.

Keywords:

carbon dioxide, methane, carbon monoxide, harmonic analysis, CCGCRV, trend, CO/CO2 emission ratio

References:

1. Hodnebrog Ø., Aamaas B., Fuglestvedt J.S., Marston G., Myhre G., Nielsen C.J., Sandstad M., Shine K.P., Wallington T.J. Updated global warming potentials and radiative efficiencies of halocarbons and other weak atmospheric absorbers // Rev. Geophys. 2020. V. 58. P. e2019RG000691.
2. WMO Greenhouse Gas Bulletin. No. 17, 25 October 2021 [Electronic resource]. URL: https://library.wmo. int/doc_num.php?explnum_id=10904 (last access: 29.11.2022).
3. Sun Y., Yin H., Cheng Y., Zhang Q., Zheng B., Notholt J., Lu X., Liu C., Tian Y., Liu J. Quantifying variability, source, and transport of CO in the urban areas over the Himalayas and Tibetan Plateau // Atmos. Chem. Phys. 2021. V. 21. P. 9201–9222.
4. Ivakhov V.M., Paramonova N.N., Privalov V.I., Zinchenko A.V., Loskutova M.A., Makshtas A.P., Kustov V.Y., Laurila T., Aurela M., Asmi E. Atmosfernaya kontsentratsiya dioksida ugleroda na stantsiyah Tiksi i Mys Baranova v 2010–2017 years // Meteorol. i gidrolog. 2019. N 4. P. 110–121.
5. Arshinov M.Yu., Belan B.D., Davydov D.K., Inouye G., Maksyutov Sh., Machida T., Fofonov A.V. Prostranstvennaya i vremennaya izmenchivost' koncentracii СО2 i СН4 v prizemnom sloe vozduha na territorii Zapadnoj Sibiri // Optika atmosf. i okeana. 2009. V. 22, N 2. P. 183–192; Arshinov M.Yu., Belan B.D., Davydov D.K., Inouye G., Maksyutov Sh., Machida T., Fofonov A.V. Vertical distribution of greenhouse gases above Western Siberia by the long-term measurement data // Atmos. Ocean. Opt. 2009. V. 22, N 3. P. 316–324.
6. Sasakawa M., Machida T., Tsuda N., Arshinov M., Davydov D., Fofonov A., Krasnov O. Aircraft and tower measurements of CO2 concentration in the planetary boundary layer and the lower free troposphere over southern taiga in West Siberia: Long-term records from 2002 to 2011 // J. Geophys. Res.: Atmos. 2013. V. 118, N 16. P. 9489–9498.
7. Doklad ob osobennostyah klimata na territorii Rossijskoj Federacii za 2021 year URL: https://cc.voeikovmgo.ru/images/sobytiya/2022/03/doklad_klimat2021.pdf (data obrashcheniya: 29.11.2022).
8. Urban A.V., Prokushkin A.S., Korets M.A., Panov A.V., Gerbig Ch., Heimann M. Influence of the underlying surface on greenhouse gas concentrations in the atmosphere over Central Siberia // Geo. Nat. Resour. 2019. V. 40. P. 221–229.
9. Aref'ev V.N., Kamenogradskij N.E., Kashin F.V., Shilkin A.V. Fonovaya sostavlyayushchaya koncentracii dvuokisi ugleroda v prizemnom vozduhe (stanciya monitoringa «Obninsk») // Izv. RAN. Fizika atmosfery i okeana. 2014. V. 50, N 6. P. 655–662.
10. Aref'ev V.N., Akimenko R.M., Kashin F.V., Upenek L.B. Fonovaya sostavlyayushchaya koncentracii metana v prizemnom vozduhe (stanciya monitoringa «Obninsk» // Izv. RAN. Fizika atmosfery i okeana. 2016. V. 52, N 1. P. 42–50.
11. Kashin F.V., Aref'ev V.N., Sizov N.I., Akimenko R.M., Upenek L.B. Fonovaya sostavlyayushchaya okisi ugleroda v prizemnom vozduhe (stanciya monitoringa «Obninsk») // Izv. RAN. Fizika atmosfery i okeana. 2016. V. 52, N 3. P. 281–287.
12. Elansky N.F., Kouznetsov R.D., Verevkin Y.M., Ponomarev N.A., Rakitin V.S., Shilkin A.V., Semutnikova E.G., Zakharova P.V. Time variations in the concentration of pollutants in the atmosphere over Moscow and estimation of their emissions // IOP Conference Series: Earth Environ. Sci. 2019. V. 231, N 1. P. 012014.
13. UN-Habitat [Electronic resource]. URL: https://unhabitat.org/sites/default/files/2020/06/ndc_guide_19062020.pdf (last access: 29.11.2022).
14. Karbonovye poligony Rossijskoj Federacii [Electronic resource]. URL: https://carbon-polygons.ru/ (data obrashcheniya: 29.11.2022).
15. Makarova M.V., Arabadzhyan D.K., Foka S.Ch., Paramonova N.N., Poberovskii A.V., Timofeev Yu.M., Pankratova N.V., Rakitin V.S. Otsenka nochnyh emissiy uglerodosoderzhashchih gazov v prigorodah Sankt-Peterburga // Meteorol. i gidrol. 2018. N 7. P. 36–44.
16. Makarova M.V., Abakumov E.V., Shevchenko E.V., Paramonova N.N., Pakhomova N.A. Lvova N.V., Vetrova M.A., Foka S.C., Guzov I.N., Ivakhov V.M., Ionov D.V., Khoroshavin A.V., Kostsov V.S., Mikushev S.V., Mikhailov E.F., Pavlovsky A.A., Titov V.O. From carbon polygon to carbon farm: The potential and ways of developing the sequestration carbon industry in the Leningrad Region and St. Petersburg // Vestnik of Saint Petersburg University. 2023. Earth Sciences. V. 68, N 1. P. 82–102.
17. Sankt-Peterburgskij gosudarstvennyj universitet, nauchnyj park GEOMODEL': [Electronic resource]. URL: https://researchpark.spbu.ru/equipment-geomodel-rus/1274-geomodel-izmereniye-klimaticheskih-parametrov-atmosferi-rus (data obrashcheniya: 3.04.2023).
18. ATLAS Leningradskoj oblasti / gl. red. D.A. Subetto. SPb.: Izd-vo RGPU im. A.I. Gercena, 2022. 112 p.
19. Foka S.C., Makarova M.V., Ionov D.V., Poberovskiy A.V., Paramonova N.N., Ivakhov V.M. Evaluation of methane emission intensities for agglomeration territory of Saint-Petersburg // Proc. SPIE. 2020. V. 11560, 115602N.
20. WMO International Greenhouse Gas Monitoring Symposium – Poster Session: [Electronic resource]. URL: https://filecloud.wmo.int/share/s/U8__ZsYTQFKoH8O1yqF0OA (last access: 3.04.2023).
21. Baer D.S., Paul J.B., Gupta M., O'Keefe A. Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy // Appl. Phys. B: Lasers Opt. 2002. V. 75, N 2. P. 261–265.
22. Foka S.CH., Makarova M.V., Poberovskij A.V., Timofeev Yu.M. Vremennye variacii koncentracii СО2, СН4 i CO v prigorode Sankt-Peterburga (Petergof) // Optika atmosf. i okeana. 2019. V. 32, N 10. P. 860–866.
23. Makarova M.V., Poberovskij A.V., Yagovkina S.V., Karol' I.L., Lagun V.E., Paramonova N.N., Reshetnikov A.I., Privalov V.I. Issledovanie processov formirovaniya polya metana v atmosfere Severo-Zapadnogo regiona Rossijskoj Federacii // Izv. RAN. Fizika atmosfery i okeana. 2006. V. 42, N 2. P. 237–249.
24. Higuchi K., Worthy D., Chan D., Shashkov A. Regional source/sink impact on the diurnal, seasonal and inter-annual variations in atmospheric CO2 at a boreal forest site in Canada // Tellus B. 2003. V. 55. P. 115–125.
25. Inoue H.Y., Matsueda H. Measurements of atmospheric CO2 from a meteorological tower in Tsukuba, Japan // Tellus. 2001. V. 53B, N 3. P. 205–219.
26. Conil S., Helle J., Langrene L., Laurent O., Delmotte M., Ramonet M. Continuous atmospheric CO2, CH4, and CO measurements at the Observatoire Pérenne de l'Environnement (OPE) station in France from 2011 to 2018 // Atmos. Meas. Tech. 2019. V. 12. P. 6361–6383.
27. Arabadzhyan D.K., Paramonova N.N., Makarova M.V., Poberovskij A.V. Analiz vremennoj izmenchivosti koncentracii metana v atmosfere po dannym nazemnyh nablyudenij // Vestnik Sankt-Peterburgskogo universiteta. Fizika i himiya. 2015. V. 2 (60), N 3. P. 204-215.
28. Popa M.E., Gloor M., Manning A.C., Jordan A., Schultz U., Haensel F., Seifert T., Heimann M. Measurements of greenhouse gases and related tracers at Bialystok tall tower station in Poland // Atmos. Meas. Tech. 2010. V. 3. P. 407–427.
29. Apadula F., Cassardo C., Ferrarese S., Heltai D., Lanza A. Thirty years of atmospheric CO2 observations at the Plateau Rosa Station, Italy // Atmosphere. 2019. V. 10, N 7. P. 418.
30. Scargle J.D. Studies in astronomical time series analysis. I – Modeling random processes in the time domain // Astrophys. J. Suppl. Ser. 1981. V. 45. P. 1–71.
31. Thoning K.W., Tans P.P., Komhyr W.D. Atmospheric carbon dioxide at Mauna Loa Observatory. 2. Analysis of the NOAA GMCC Data, 1974–1985 // J. Geophys. Res. 1989. V. 94, N D6. P. 8549–8565.
32. Dlugokencky E., Tans P. Trends in Atmospheric Carbon Dioxide // NOAA/ESRL [Electronic resource]. URL: https://gml.noaa.gov/ccgg/trends/gl_gr.html (last access: 3.04.2023).
33. NOAA/ESRL [Electronic resource]. URL: https://gml.noaa.gov/ccgg/trends_ch4/ (last access: 3.04.2023).
34. Yin Y., Chevallier F., Ciais P., Broquet G., Fortems-Cheiney A., Pison I., Saunois M. Decadal trends in global CO emissions as seen by MOPITT // Atmos. Chem. Phys. 2015. V. 15, N 23. P. 13433–13451.
35. Buchholz R.R., Worden H.M., Park M., Francis G., Deeter M.N., Edwards D.P., Kulawik S.S. Air pollution trends measured from Terra: CO and AOD over industrial, fire-prone, and background regions // Rem. Sens. Environ. 2021. V. 256. P. 112275.
36. Ammoura L., Xueref-Remy I., Gros V., Baudic A., Bonsang B., Petit J.-E., Perrussel O., Bonnaire N., Sciare J., Chevallier F. Atmospheric measurements of ratios between CO2 and co-emitted species from traffic: A tunnel study in the Paris megacity //Atmos. Chem. Phys. 2014. V. 14. P. 12871–12882.
37. Turnbull J.C., Sweeney C., Karion A., Newberger T., Lehman S.J., Tans P.P., Davis K.J., Lauvaux T., Miles N.L., Richardson S.J., Cambaliza M.O., Shepson P.B., Gurney K., Patarasuk R., Razlivanov I. Toward quantification and source sector identification of fossil fuel CO2 emissions from an urban area: Results from the INFLUX experiment // J. Geophys. Res. Atmos. 2015. V. 120. P. 292–312.
38. Berhanu T.A., Szidat S., Brunner D., Satar E., Schanda R., Nyfeler P., Battaglia M., Steinbacher M., Hammer S., Leuenberger M. Estimation of the fossil fuel component in atmospheric CO2 based on radiocarbon measurements at the Beromünster tall tower, Switzerland // Atmos. Chem. Phys. 2017. V. 17. P. 10753–10766.
39. Sim S., Jeong S., Park H., Park C., Kwak K.H., Lee S.B., Kim C.L., Lee S., Cgang J., Kang H., Woo J.H. Co-benefit potential of urban CO2 and air quality monitoring: A study on the first mobile campaign and building monitoring experiments in Seoul during the winter // Atmos. Pollut. Res. 2020. V. 11. DOI: 10.1016/j.apr.2020.08.009.