Vol. 36, issue 11, article # 6

Razenkov I. A. Sounding of Kelvin–Helmholtz waves by a turbulent lidar. I. Lidar BSE-4. // Optika Atmosfery i Okeana. 2023. V. 36. No. 11. P. 910–920. DOI: 10.15372/AOO20231106 [in Russian].
Copy the reference to clipboard

Abstract:

Atmospheric waves are of increased interest in connection with exchange processes occurring in the atmospheric boundary layer. Experimental results of sounding mesoscale Kelvin–Helmholtz waves by turbulent lidars in a stably stratified boundary layer of the atmosphere are presented. This paper presents the data of measurements by BSE-4 lidar (532 nm), which has been working over forest-steppe for a long time. Atmospheric waves in most cases were observed in the evening and at night in the range of heights from the land to 600 m, when the Richardson number in the surface air layer did not exceed a critical value of +1/4. Fourier analysis of the time series of the structural characteristic of the refractive index Cn2 showed that the spectrum of the wave process in the atmospheric boundary layer consists of a set of monochromatic waves with different oscillation frequencies. During the observations, the period of the waves varied from 1 to 11 min, and their amplitude changed from 20 to 300 m. It is found that monochromatic waves exist from half an hour to two hours. The disappearance of some monochromatic waves is compensated by the appearance of new ones. The process of generating small-scale turbulence runs throughout the life cycle of a Kelvin–Helmholtz wave. The results indicate that the turbulent lidar ensures remote detection and observation of atmospheric waves

Keywords:

turbulent lidar, backscatter enhancement effect, Kelvin–Helmholtz instability, atmospheric turbulence

References:

1. Gossard E., Huk U. Volny v atmosfere. M.: Mir, 1978. 532 p.
2. Shakina N.P. Gidrodinamicheskaya neustoichivost' v atmosfere. L.: Gidrometeoizdat, 1990. 308 p.
3. Nappo C.J. An introduction to atmospheric gravity waves. Academic press, 2002. 300 p.
4. Poulos G.S., Blumen W., Fritts D.C., Lundquist J.K., Sun J., Burns S.P., Nappo C., Banta R., Newsom R., Cuxart J., Terradellas E., Balsley B., Jensen M. CASES-99: A comprehensive Investigation of the stable nocturnal boundary layer // Bull. Am. Meteorol. Soc. 2002. V. 83. P. 555–581.
5. Eichinger W.E., Cooper D.I., Forman P.R., Griegos J., Osborn M.A., Richter D., Tellier L.L., Thornton R. The development of a scanning Raman water vapor lidar for boundary layer and tropospheric observations // J. Atmos. Ocean. Technol. 1999. V. 11, N 2. P. 1753–1766.
6. Newsom R.K., Banta R.M. Shear instability gravity waves in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99 // J. Atmos. Sci. 2003. V. 60. P. 16–33.
7. Lyulyukin V.S., Kallistratova M.A., Kuznetsov R.D., Kuznetsov D.D., Chunchuzov I.P., SHirokova G.Yu. Vnutrennie gravitatsionno-sdvigovye volny v atmosfernom pogranichnom sloe po dannym akusticheskoi lokatsii // Izv. RAN. Fiz. atmosf. i okeana. 2015. V. 51, N 2. P. 218–229.
8. Kallistratova M.A., Lyulyukin V.S., Kuznetsov R.D., Petenko I.V., Zaitseva D.V., Kuznetsov D.D. Sodarnye issledovaniya voln Kel'vina–Gel'mgol'tsa v nizkourovnevyh struinyh techeniyah // Dinamika volnovyh i obmennyh protsessov v atmosfere. M.: GEOS, 2017. P. 212–259.
9. Vinogradov A.G., Gurvich A.S., Kashkarov S.S., Kravtsov Yu.A., Tatarskii V.I. «Zakonomernost' uvelicheniya obratnogo rasseyaniya voln». Svidetel'stvo na otkrytie N 359. Prioritet otkrytiya: 25 august 1972 year v chasti teoreticheskogo obosnovaniya i 12 august 1976 year v chasti eksperimental'nogo dokazatel'stva zakonomernosti. Gosudarstvennyi reestr otkrytii SSSR // Byull. izobretenii. 1989. N 21.
10. Vinogradov A.G., Kravtsov Yu.A., Tatarskii V.I. Effekt usileniya obratnogo rasseyaniya na telah, pomeshchennyh v sredu so sluchainymi neodnorodnostyami // Izv. vuzov. Radiofiz. 1973. V. 16, N 7. P. 1064–1070.
11. Kravtsov Yu.A., Saichev A.I. Effekty dvukratnogo prohozhdeniya voln v sluchaino neodnorodnyh sredah. // Uspehi fiz. nauk. 1982. V. 137, N 3. P. 501–527.
12. Gurvich A.S. Lidarnoe zondirovanie turbulentnosti na osnove usileniya obratnogo rasseyaniya // Izv. RAN. Fiz. atmosf. i okeana. 2012. V. 48, N 6. P. 655–665.
13. Razenkov I.A. Analiz tehnicheskih reshenii pri proektirovanii turbulentnogo lidara // Optika atmosf. i okeana. 2022. V. 35, N 9. P. 766–776; Razenkov I.A. Engineering and technical solutions when designing a turbulent lidar // Atmos. Ocean. Opt. 2022. V. 35, N S1. P. S148–S158.
14. Razenkov I.A. Perspektivy primeneniya turbulentnogo UOR-lidara dlya issledovaniya pogranichnogo sloya atmosfery // Optika atmosf. i okeana. 2021. V. 34, N 1. P. 26–35; Razenkov I.A. Capabilities of a turbulent BSE-lidar for the study of the atmospheric boundary layer // Atmos. Ocean. Opt. 2021. V. 34, N 3. P. 229–238.
15. Vorob'ev V.V. O primenimosti asimptoticheskih formul vosstanovleniya parametrov «opticheskoi» turbulentnosti iz dannyh impul'snogo lidarnogo zondirovaniya. I. Uravneniya // Optika atmosf. i okeana. 2016. V. 29, N 10. P. 870–875; Vorob’ev V.V. On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: I – Equations // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 156–161.
16. Vorob'ev V.V. O primenimosti asimptoticheskih formul vosstanovleniya parametrov «opticheskoi» turbulentnosti iz dannyh impul'snogo lidarnogo zondirovaniya. II. Rezul'taty chislennogo modelirovaniya // Optika atmosf. i okeana. 2016. V. 29, N 11. P. 987–993; Vorob’ev V.V. On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: II – Results of numerical simulation // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 162–168.
17. Razenkov I.A. Evristicheskii podhod k opredeleniyu strukturnoi harakteristiki Cn2 iz lidarnyh dannyh // Optika atmosf. i okeana. 2022. V. 35, N 3. P. 195–204; Razenkov I.A. A heuristic approach to defining the structure parameter of the refractive index of the atmosphere from turbulent lidar data // Atmos. Ocean. Opt. 2022. V. 35, N 4. P. 345–354.
18. Miles J.W. On the stability of heterogeneous shear flow // J. Fluid Mech. 1961. V. 10, N 4. P. 496–509.
19. Howard L.N. Note on a paper of John W. Miles // J. Fluid Mech. 1961. V. 10, N 4. P. 509–512.
20. Razenkov I.A. Spetsifika zondirovaniya pogranichnogo sloya atmosfery turbulentnym lidarom // Optika atmosf. i okeana. 2020. V. 33, N 8. P. 643–648.
21. Squire H.B. On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls // Proc. Roy. Soc. London. Series A. 1933. V. 142, N 847. P. 621–628.
22. URL: https://www.ventusky.com/ (last access: 13.03.2023).