Vol. 36, issue 11, article # 5

Bazhenov O. E. Chlorine oxide as an indicator of ozone destruction in the winter-spring Arctic stratosphere based on Aura MLS observations. // Optika Atmosfery i Okeana. 2023. V. 36. No. 11. P. 904–909. DOI: 10.15372/AOO20231105 [in Russian].
Copy the reference to clipboard

Abstract:

Behavior of ozone in the Arctic is of major concern. Ozone anomalies occur every five years on the average. The last, record strong decrease of the ozone level in the stratosphere of the Arctic took place in March–April 2020. In February 2022, ozone destruction developed by the scenario very similar to the anomaly of 2020. Like in 2020, the ClO mixing ratio, which can be considered a reliable indicator of ozone destruction, strongly increased after the end of the polar night in Arctic latitudes in 2022, but the subsequent ozone depletion process was halted by a sudden major stratospheric warming on March 20, 2022. In this work, we analyze ozone destruction in 2020–2022 based on measurements of the total ozone content over 2003–2022 from the TEMIS service, profiles of the air temperature and ozone mixing ratio for 2005–2022 and of ClO mixing ratio for 2020–2022 from Aura MLS observations. The following sites are considered: Eureka, Canada; Ny-Ålesund, Norway; Thule, Greenland; and Resolute, Canada. A relationship is revealed between ozone and chlorine oxide contents. High coefficients of correlations between oscillations of the above parameters at close altitudes of their recording, as well as between the total O3 and ClO contents calculated from their profiles, indicates their close interrelation. Hence, the ClO concentration and total content can be used as indicators of ozone destruction in the Arctic stratosphere.

Keywords:

ozone, sudden stratospheric warming, solar exposure, chlorine oxide, temperature, Aura MLS and TEMIS observations

References:

1. Manney G.L., Livesey N.J., Santee M.L., Froidevaux L., Lambert A., Lawrence Z.D., Millán L.F., Neu J.L., Read W.G., Schwartz M.J., Fuller R.A. Record low Arctic stratospheric ozone in 2020: MLS observations of chemical processes and comparisons with previous extreme winters // Geophys. Res. Lett. 2020. V. 47. P. e2020GL089063. DOI: 10.1029/2020GL089063.
2. Bazhenov O.E., Nevzorov A.A., Nevzorov A.V., Dolgii S.I., Makeev A.P. Disturbance of the stratosphere over Tomsk prior to the 2018 major sudden stratospheric warming: Effect of ClO dimer cycle // Opt. Mem. Neural Networks. 2021. V. 30, N 2. P. 146–156. DOI: 10.3103/S1060992X21020065.
3. Von Clarmann T. Chlorine in the stratosphere // Atmosfera. 2013. V. 26, N 3. P. 415–458.
4. Solomon S. Stratospheric ozone depletion: A review of concepts and history // Rev. Geophys. 1999. V. 37, N 3. P. 275–316. DOI: 10.1029/1999RG900008.
5. Hemond H.F., Fechner E.J. Chemical fate and transport in the environment. Academic Press, 2022. 520 p.
6. Baldwin M.P., Ayarzagüena B., Birner T., Butchart N., Butler A.H., Charlton-Perez A.J., Butler A.H., Domeisen D.I.V., Garfinkel C.I., Garny H., Gerber E.P., Hegglin M.I., Langematz U., Pedatella N. Sudden stratospheric warmings // Rev. Geophys. 2021. V. 59. P. e2020RG000708. DOI: 10.1029/2020RG000708.
7. Roy R., Kuttippurath J. The dynamical evolution of sudden stratospheric warmings of the Arctic winters in the past decade 2011–2021 // SN Appl. Sci. 2022. V. 4. P. 105. DOI: 10.1007/s42452-022-04983-4.
8. Kuttippurath J., Feng W., Müller R., Kumar P., Raj S., Gopikrishnan G.P., Roy R. Exceptional loss in ozone in the Arctic winter/spring of 2019/2020 // Atmos. Chem. Phys. 2021. V. 21. P. 14019–14037. DOI: 10.5194/acp-21-14019-2021.
9. Rao J., Garfinkel C.I., Wu T., Lu Y., Lu Q., Liang Z. The January 2021 sudden stratospheric warming and its prediction in subseasonal to seasonal models // J. Geophys. Res.: Atmos. 2021. V. 126. P. e2021JD035057. DOI: 10.1029/2021JD035057.
10. Vargin P.N., Koval A.V., Guryanov V.V. Arctic stratosphere dynamical processes in the winter 2021–2022 // Atmosphere. 2022. V. 13. P. 1550. DOI: 10.3390/atmos13101550.
11. Van der A.R., Temis team. Tropospheric Emission Monitoring Internet Service // Geophysical Research Abstracts. 2010. V. 12, EGU2010-9953 (2010).
12. Livesey N., Read W., Froidevaux L., Lambert A., Santee M., Schwartz M., Millán L., Jarnot R., Wagner P., Hurst D., Walker K., Sheese P., Nedoluha G. Investigation and amelioration of long-term instrumental drifts in water vapor and nitrous oxide measurements from the Aura Microwave Limb Sounder MLS and their implications for studies of variability and trends // Atmos. Chem. Phys. 2021. V. 21. P. 15409–15430. DOI: 10.5194/acp-21-15409-2021.
13. Bazhenov O.E. Ozonovye anomalii v stratosfere Arktiki i Severnoi Evrazii: sravnenie yavlenii 2011 i 2020 years po dannym TEMIS i Aura MLS // Optika atmosf. i okeana. 2022. V. 35, N 5. P. 390–396; Bazhenov O.E. Ozone anomalies in the stratosphere of the Arctic and North Eurasia: Comparison of the 2011 and 2020 events using TEMIS and Aura MLS data // Atmos. Ocean. Opt. 2022. V. 35, N 5. P. 517–523.