Vol. 36, issue 10, article # 10

Loboda E. L., Lutsenko A. V., Kasymov D. P., Agafontsev M. V., Kolesnikov I. A. Study of the influence of a model fire on the characteristics of turbulence in the atmosphere. // Optika Atmosfery i Okeana. 2023. V. 36. No. 10. P. 854–860. DOI: 10.15372/AOO20231010 [in Russian].
Copy the reference to clipboard

Abstract:

This paper analyzes and generalizes the results of studies of turbulence in flame and in the vicinity of the combustion source during model steppe and crown fires in the period from 2019 to 2022 at the Base Experimental Complex of Institute of Atmospheric Optics SB RAS. The spectra of air temperature changes and the scales of induced atmospheric turbulence in the vicinity of the front of a model fire are obtained. For a steppe fire, the air temperature pulsation frequency ranges corresponding to the inertial and dissipative sections of the energy spectrum are found; dissipative processes begin to form at an altitude of 10 m at wave numbers with lgk > 1.58 and the corresponding pulsation frequency f > 3 Hz; at an altitude of 3 m, dissipative processes are not observed. During a model crown fire, turbulent processes in the atmosphere correspond to the inertial part of the energy spectrum at an altitude of 10 m, and dissipative processes practically do not manifest themselves.

Keywords:

wildland fire, crown fire, turbulence, turbulence scale, atmosphere, combustion, dissipation

References:

1. Kasischke E.S., Christensen N.L., Stocks B.J. Fire, global warming, and the carbon balance of boreal forests // Ecol. Appl. 1995. V. 5, N 2. P. 437–451. DOI: 10.2307/1942034.
2. Voulgarakis A., Field R.D. Fire influences on atmospheric composition, air quality and climate // Curr. Pollut. Rep. 2015. V. 1. P. 70–81. DOI: 10.1007/s40726-015-0007-z.
3. Vinogradova A.A., Smirnov N.S., Korotkov V.N., Romanovskaya A.A. Lesnye pozhary v Sibiri i na Dal'nem Vostoke: emissii i atmosfernyy perenos chernogo ugleroda v Arktiku // Optika atmosf. i okeana. 2015. V. 28, N 6. P. 512–520: Vinogradova A.A., Smirnov N.S., Korotkov V.N., Romanovskaya A.A. Forest fires in Siberia and the Far East: Emissions and atmospheric transport of black carbon to the Arctic // Atmos. Ocean. Opt. 2015. V. 28, N 6. P. 512–520.
4. Sitnov S.A., Mokhov I.I., Dzhola A.V. Vliyanie sibirskikh pozharov na soderzhanie monooksida ugleroda v atmosfere nad evropeyskoy chast'yu Rossii letom 2016 year // Optika atmosf. i okeana. 2017. V. 30, N 2. P. 146–152.
5. Loboda E.L., Kasymov D.P., Agafontsev M.V., Reyno V.V., Lutsenko A.V., Staroseltseva A.A., Perminov V.V., Martynov P.S., Loboda Ya.A., Orlov K.E. Crown fire modeling and its effect on atmospheric characteristics // Atmosphere. 2022. V. 13, N 12. P. 1–9.
6. Grishin A.M. Matematicheskoe modelirovanie lesnykh pozharov i novye sposoby bor'by s nimi. Novosibirsk: Nauka SO AN SSSR, 1992. 407 p.
7. Fomichev M. RIA Novosti [Elektronnyy resurs]. URL: https://ria.ru/20101126/297098566.html (data obrashcheniya: 20.04.2023).
8. Syvorotkin V.L. O prirode prirodnykh pozharov // Elektronnoe nauchnoe izdanie Al'manakh Prostranstvo i Vremya. 2016. V. 11, N 1. P. 1–29.
9. Shultz D. Seeding ice clouds with wildfire emissions [Electronic resource]. URL: https://eos.org/research-spotlights/seeding-ice-clouds-with-wildfire-emissions (last access: 20.04.2023).
10. Clements C.B., Lareau N.P., Seto D., Contezac J., Davis B., Teske C., Zajkowski T.J., Hudak A.T., Bright B.C., Dickinson M.B., Butler B.W., Jimenez D., Hiers J.K. Fire weather conditions and fire – atmosphere interactions observed during low-intensity prescribed fires – RxCADRE 2012 // Int. J. WildL. Fire. 2016. V. 25, N 1. P. 90–101. DOI: 10.1071/WF14173.
11. Loboda E.L., Matvienko O.V., Vavilov V.P., Reyno V.V. Infrared thermographic evaluation of flame turbulence scale // Infrared Phys. Technol. 2015. V. 72. P. 1–7.
12. Mueller E.V., Skowronski N., Thomas J., Clark K., Gallagher M., Hadden R., Mell W., Simeoni A. Local measurements of wildland fire dynamics in a field-scale experiment // Combust. Flame. 2018. V. 194. P. 452–463. DOI: 10.1016/j.combustflame.2018.05.028.
13. Morvan D., Dupuy J.L., Rigolot E., Valette J.C. FIRESTAR: A physically based model to study wildfire behaviour // Forest Ecol. Manag. 2006. V. 234 (Supplement). P. S114. DOI: 10.1016/j.foreco.2006.08.155.
14. Mell W., Jenkins M.A., Gould J., Cheney Ph. A physics-based approach to modelling grassland fires // Int. J. Wildl. Fire. 2007. V. 16, N 1. P. 1–22.
15. Mell W., Maranghides A., McDermott R., Manzello S.L. Numerical simulation and experiments of burning Douglas fir trees // Comb. Flame. 2009. V. 156. P. 2023–2041.
16. Filippi J.B., Bosseur F., Mari C., Stradda S. Numerical experiments using MESONH/FOREFIRE coupled atmospheric model // 8th Symposium on fire and forest meteorology. Kalispell, Montana USA, 13–15 October 2009. P. 10.
17. Linn R.R., Reisner J., Colman J.J., Winterkamp J. Studying wildfire behaviour using FIRETEC // Int. J. Wildl. Fire. 2002. V. 11. P. 233–246.
18. Berezhnaya N.A., Repina E.M. Vliyanie pozharov na okruzhayushchuyu prirodnuyu sredu i zdorov'e cheloveka // Pozharnaya bezopasnost': problemy i perspektivy. 2013. N 1(4). P. 321–325.
19. Sin'kov O.A., Pochapskiy A.A. Vliyanie lesnykh pozharov na okruzhayushchuyu sredu // Aktual'nye problemy geotekhniki, ekologii i zashchity naseleniya v chrezvychaynykh situatsiyakh: materialy 73-y studencheskoy nauchno-tekhnicheskoy konferentsii, 28 april 2017. Elektron. dan. Minsk: BNTU, 2017. P. 101–103.
20. Sharagin A.M. Vliyanie lesnykh pozharov na ekologicheskuyu situatsiyu // Usp. sovremennogo estestvoznaniya. 2011. N 7. P. 236–236.
21. Geras'kina A.P., Teben'kova D.N., Ershov D.V., Ruchinskaya E.V., Sibirtseva N.V., Lukina N.V. Pozhary kak faktor utraty bioraznoobraziya i funktsiy lesnykh ekosistem // Voprosy lesnoy nauki. 2021. V. 4(2). P. 1–76. DOI: 10.31509/2658-607X-202142-11.
22. Nesgovorova N.P., Savel'ev V.G., Ivantsova G.V. Izuchenie problemy lesnykh pozharov kak faktora ekologicheskoy opasnosti: regional'nyy aspekt // Fundamental'nye issledovaniya. 2014. N 12 (part 6). P. 1207–1211.
23. Katurji M., Noonan B., Zhang J., Valencia A., Shumacher B., Kerr J., Strand T., Pearce G., Zawar-Reza P. Atmospheric turbulent structures and fire sweeps during shrub fires and implications for flaming zone behavior // Int. J. Wildl. Fire. 2022. V. 32, N 1. P. 43–55. DOI: 10.1071/WF22100.
24. Loboda E.L., Anufriev I.S., Agafontsev M.V., Kop’ev E.P., Shadrin E.I., Rejno V.V., Vavilov V.P., Lucenko A.V. Evaluating characteristics of turbulent flames by using IR thermography and PIV // Infrared Phys. Technol. 2018. V. 92. P. 240–243.
25. Loboda E.L., Kasymov D.P., Agafontsev M.V., Reyno V.V., Gordeev E.V., Tarakanova V.A., Martynov P.S., Orlov K.E., Savin K.V., Dutov A.I., Loboda Yu.A. Vliyanie malykh prirodnykh pozharov na kharakteristiki atmosfery vblizi ochaga goreniya // Optika atmosf. i okeana. 2020. V. 33, N 10. P. 818–823. DOI: 10.15372/AOO20201011.
26. Loboda E.L., Reyno V.V., Agafontsev M.V. Primenenie termografii pri issledovanii protsessov goreniya. Tomsk: Izd-vo Tom. un-ta, 2016. 80 p.
27. Opisanie tipa sredstva izmereniy. Kompleksy avtomatizirovannye izmeritel'nye «Avtonomnaya meteorologicheskaya stantsiya AMK-03». URL: https://www.ktopoverit.ru/prof/opisanie/36115-07.pdf (data obrashcheniya: 20.04.2023).
28. Loboda E.L., Lutsenko A.V., Agafontsev M.V. Issledovanie turbulentnosti v plameni model'nogo pozhara i vozniknovenie indutsirovannoy atmosfernoy turbulentnosti // Izv. vuzov. Fiz. 2023. V. 66, N 4(785). P. 48–56.
29. Pope S.B. Turbulent Flows. Cambridge University Press, 2000. 810 p.
30. Volkov K.N., Emel'yanov V.N. Modelirovanie krupnykh vikhrey v raschetakh turbulentnykh techeniy. M.: Fizmatlit, 2008. 368 p.
31. Lukin V.P. Vneshniy masshtab turbulentnosti i ego vliyanie na fluktuatsii opticheskikh voln // Usp. fiz. nauk. 2021. V. 191, N 3. P. 292–317.
32. Ilyushin B.B. Protsessy perenosa v turbulentnykh techeniyakh. Novosibirsk, 2009. 102 p.