Vol. 35, issue 12, article # 14

Trigub M. V., Vasnev N. A. Features of maging formation in a bistatic laser active optics system. // Optika Atmosfery i Okeana. 2022. V. 35. No. 12. P. 1058–1063. DOI: 10.15372/AOO20221214 [in Russian].
Copy the reference to clipboard

Abstract:

The features of high-power and high-contrast imaging in a bistatic laser active optics system (laser monitor) are considered. In the developed system, a brightness amplifier has a larger volume than an illumination source, which makes provides for high-power contrast images of micro objects. For the first time, the influence of the time shift between a superradiance pulse of the amplifier and the time of signal arrival at its input on the contrast and power of images formed by one pulse was was ascertained. It is shown that artifacts formed as a result of the superluminous radiation "parasitic" reflection and scattering from optical circuit elements significantly reduce the contrast and power of the generated signals. This effect can be eliminated by the generation of an amplifier input signal before the generation of amplified spontaneous emission. The optimal delay is 1 ns.

Keywords:

active opticals system, amplifier, CuBr laser, master oscillator – power amplifier, contrast

References:

  1. Lavrukhin M.A., Bokhan P.A., Gugin P.P., Zakrevsky D.E. Self-terminating barium ion laser at 614.2 nm // Opt. Laser Technol. 2022. V. 149, N 107625. DOI: 10.1016/j.optlastec.2021.107625.
  2. Shiyanov D.V., Trigub M.V., Sokovikov V.G., Evtushenko G.S. MnCl2 laser with pulse repetition frequency up to 125 kHz // Opt. Laser Technol. 2020. V. 129, N 106302. DOI: 10.1016/j.optlastec.2020.106302.
  3. Kostadinov I.K., Temelkov K.A., Astadjov D.N. Slaveeva S.I., Yankov G.P., Sabotinov N.V. High-power copper bromide vapor laser // Opt. Commun. 2021. V. 50115, N 127363. DOI: 10.1016/j.optcom.2021.127363.
  4. Ponomarev I.V. Topchiy S.B., Andrusenko Y.N., Shakina L.D. The successful treatment of eyelid intradermal melanocytic nevi (Nevus of Miescher) with the dual-wavelengths copper vapor laser // J. Laser. Medic. Sci. 2021. V. 12. P. 1–3. DOI: 10.34172/jlms.2021.23.
  5. Belov V.V., Abramochkin V.N., Gridnev Yu.V., Kudryavtsev A.N., Kulaev S.P., Tarasenkov M.V., Troitskij V.O., Fedosov A.V. Bistaticheskaya optiko-elektronnaya svyaz' v UF-diapazone dlin voln. Polevye eksperimenty v 2016 year // Optika atmosf. i okeana. 2017. V. 30, N 2. P. 111–114.
  6. Lyabin N.A., Kazaryan M.A., Asratyan A.A., Kazaryan S.M., Ambrozevich S.A., Krasovskii V.I., Mkhitaryan R., Tonoyan G., Morozova E.A., Andrienko O.S., Li Hongda, Sachkov V.I. Current state of research in precision microprocessing and some of their applications // Proc. SPIE. 2019. V. 113222019, N 113221F. DOI: 10.1117/12.2550843.
  7. Yermachenko V.M., Kuznetsov A.P., Petrovskiy V.N., Prokopova N.M., Strel’tsov A.P., Uspenskiy S.A. Specific features of the welding of metals by radiation of high-power fiber laser // Laser Phys. 2011. V. 21, N 8. P. 1530–1537. DOI: 10.1134/S1054660X11160043.
  8. Prokoshev V.G., Abramov D.V., Danilov S.U., Shishin S.I., Chizhov A.V., Arakelian S.M. Real time diagnostics of the laser-induced thermochemical processes and nonlinear images on the surface of materials experiment and mathematical modeling // Laser Phys. 2011. V. 11, N 11. P. 1167–1171.
  9. Li L., Ilyin A.P., Gubarev F.A., Mostovshchikov A.V., Klenovskii M.S. Study of self-propagating high-temperature synthesis of aluminium nitride using a laser monitor // Ceramics Intern. 2018. V. 46, N 16. P. 19800–19808.
  10. Trigub M.V., Platonov V.V., Evtushenko G.S., Osipov V.V., Evtushenko T.G. Laser monitors for high speed imaging of materials modification and production // Vacuum. 2017. Vol. 143. P. 486–490.
  11. Trigub M.V., Torgaev S.N., Evtushenko G.S., Troitskij V.O., Shiyanov D.V. Bistaticheskij lazernyj monitor // Pis'ma v zhurn. tekhn. fiz. 2016. V. 42, N 12. P. 51–56.
  12. Vasnev N.A., Trigub M.V., Evtushenko G.S. Osobennosti raboty usilitelya yarkosti na parah bromida medi v skheme bistaticheskogo lazernogo monitora // Optika atmosf. i okeana. 2019. V. 22, N 3. P. 247–253; Vasnev N.A., Trigub M.V., Evtushenko G.S. Features of operation of a brightness amplifier on copper bromide vapors in the bistatic scheme of a laser monitor // Atmos. Ocean. Opt. 2019. V. 32, N 4. P. 483–489.
  13. Trigub M.V., Vasnev N.A., Evtushenko G.S. Bistatic laser monitor for imaging objects and processes // Appl. Phys. B: Laser. Opt. 2020. V. 126, N 3. P. 1–7. DOI: 10.1007/s00340-020-7387-5.
  14. Gubarev F.A., Mostovshchikov A.V., Il'in A.P., Li L., Burkin E.Yu., Sviridov V.V. Lazernyj monitor s nezavisimoj podsvetkoj dlya nablyudeniya protsessov vysokotemperaturnogo goreniya nanoporoshkov metallov // Pis'ma v zhurn. tekhn. fiz. 2021. V. 47, № 8. P. 20–24.
  15. Trigub M.V., Vasnev N.A., Kitler V.D., Evtushenko G.S. Primenenie bistaticheskogo lazernogo monitora dlya vysokoskorostnoj vizualizatsii protsessov goreniya // Optika atmosf. i okeana. 2020. V. 33, N 12. P. 962–966; Trigub M.V., Vasnev N.A., Kitler V.D., Evtushenko G.S. The use of a bistatic laser monitor for high-speed imaging of combustion processes // Atmos. Ocean. Opt. 2021. V. 34, N 2. P. 154–159.
  16. Astadjov D.N., Stoychev L.I., Dixit S.K., Nakhe S.V., Sabotinov N.V. High-brightness cubr mopa laser with diffraction-limited throughout-pulse emission // IEEE J. Quantum. Electron. 2005. V. 41, N 8. P. 1097–1101. DOI: 10.1109/JQE.2005.850701.
  17. Trigub M.V., Vasnev N.A., Evtushenko G.S., Dimaki V.A. Sistema sinhronizatsii impul'sno-periodicheskogo rezhima raboty aktivnyh sred na samoogranichennyh perekhodah v parah metallov // Pribory i tekhnika eksperimenta. 2019. N 1. P. 30–35. DOI: 10.1134/S0032816218060307.