Vol. 35, issue 12, article # 12

Popovicheva O. B., Chichaeva M. A., Kobelev V. O., Kasimov N. S. Black carbon seasonal trends and regional sources on Bely Island (Arctic). // Optika Atmosfery i Okeana. 2022. V. 35. No. 12. P. 1043–1050. DOI: 10.15372/AOO20221212 [in Russian].
Copy the reference to clipboard

Abstract:

The impact of aerosol sources on the atmosphere pollution of Russian Arctic sector is underestimated. The newly aerosol station was installed on Bely island (Kara sea) in August 2019, it is located on the way of air mass transportation from industrial regions of Western Siberia to the Arctic. Continuous aethalometric measurements of short leaving climate tracer – black carbon are carried out. They showed the seasonal variability with high values from December to April (60 ± 92 ng/m3) and low in June–September (18 ± 72 ng/m3). Pollution events with concentration higher background are identified. Regional distribution of fossil fuel and biomass burning sources are obtained by the concentration weight trajectory model. Impact of gas flaring from oil and gas extraction areas of Western Siberia, Volga-Ural, and Komi Republic is the most pronounced during the cold period while the wildfire smoke emissions are dominated in warm season. The difference between the black carbon concentrations in ultraviolet and infrared wavelength regions serves as a marker of biomass burning impact on the aerosol composition, indicating the residential wood combustion and agriculture and wildfires during cold and warm season, correspondently.

Keywords:

Arctic, black carbon, emissions, fossil fuel combustion, wildfires, seasonal trends

Figures:

References:

  1. Quinn P.K., Stohl A., Arneth A., Bernsten T., Burhart J., Christensen J., Flanner M., Kupiainen K., Lihavainen H., Sheppherd M., Shevchenko V.P., Skov H., Vestreng V. The Impact of Black Carbon on Arctic Climate (2011). Oslo: Arctic Monitoring and Assessment Programme (AMAP), 2011. 72 p.
  2. Wang Q., Jacob D.J., Fisher J.A., Mao J., Leibensperger E.M., Carouge C.C., Le Sager P., Kondo Y., Jimenez J.L., Cubison M.J., Doherty S.J. Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter–spring: Implications for radiative forcing // Atmos. Chem. Phys. 2011. V. 11. P. 12453–12473.
  3. Ren L., Yan Y., Wang H., Zhang R., Wang P., Liao H. Source attribution of Arctic black carbon and sulfate aerosols and associated Arctic surface warming during 1980–2018 // Atmos. Chem. Phys. 2020. V. 20. P. 9067–9085.
  4. Flanner M.G. Arctic climate sensitivity to local black carbon // J. Geophys. Res.: Atmos. 2013. V. 118. P. 1840–1851.
  5. Quinn P.K., Bates T.S., Baum E., Doubleday N., Fiore A.M., Flanner M., Fridlind A., Garrett T.J., Koch D., Menon S., Shindell D., Stohl A., Warren S.G. Short-lived pollutants in the Arctic: Their climate impact and possible mitigation strategies // Atmos. Chem. Phys. 2008. V. 8. P. 1723–1735.
  6. Sandradewi J., Prévôt A.S., Szidat S., Perron N., Alfarra M.R., Lanz V.A., Weingartner E., Baltensperger U. Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter // Environ. Sci. Technol. 2008. V. 42. P. 3316–3323.
  7. Grange S.K., Lötscher H., Fischer A., Emmenegger L., Hueglin C. Evaluation of equivalent black carbon source apportionment using observations from Switzerland between 2008 and 2018 // Atmos. Meas. Tech. 2020. V. 13. P. 1867–1885.
  8. Yue S., Zhu J., Chen S., Xie Q., Li W., Li L., Ren H., Su S., Li P., Ma H. Brown carbon from biomass burning imposes strong circum-Arctic warming // One Earth. 2022. V. 5. P. 293–304.
  9. Zhu C., Kanaya Y., Takigawa M., Ikeda K., Tanimoto H., Taketani F., Miyakawa T., Kobayashi H., Pisso I. FLEXPART V. 10. 1 simulation of source contributions to Arctic black carbon // Atmos. Chem. Phys. 2020. V. 20. P. 1641–1656.
  10. Zenkova P., Chernov D., Shmargunov V., Panchenko M., Belan B.D. Submikronnyj aerozol' i pogloshchayushchee veshchestvo v troposfere rossijskogo sektora Arktiki po dannym izmerenij samoleta-laboratorii Tu-134 «Optik» v 2020 year // Optika atmosf. i okeana. 2021. V. 34, N 11. P. 882–890; Zenkova P., Chernov D., Shmargunov V., Panchenko M., Belan B.D. Submicron aerosol and absorbing substance in the troposphere of the Russian Sector of the Arctic according to measurements onboard the Tu-134 Optik Aircraft Laboratory in 2020 // Atmos. Ocean. Opt. 2022. V. 35. P. 43–51.
  11. Schmale J., Sharma S., Decesari S., Pernov J., Massling A., Hansson H.-C., Von Salzen K., Skov H., Andrews E., Quinn P.K. Pan-Arctic seasonal cycles and long-term trends of aerosol properties from 10 observatories // Atmos. Chem. Phys. 2022. V. 22. P. 3067–3096.
  12. Paris J.-D., Stohl A., Nédélec P., Arshinov M.Y., Panchenko M., Shmargunov V., Law K.S., Belan B., Ciais P. Wildfire smoke in the Siberian Arctic in summer: source characterization and plume evolution from airborne measurements // Atmos. Chem. Phys. 2009. V. 9. P. 9315–9327.
  13. Manousakas M., Popovicheva O., Evangeliou N., Diapouli E., Sitnikov N., Shonija N., Eleftheriadis K. Aerosol carbonaceous, elemental and ionic composition variability and origin at the Siberian High Arctic, Cape Baranova // Tellus B: Chem. Phys. Meteorol. 2020. V. 72. P. 1–14.
  14. Sakerin S.M., Golobokova L.P., Kabanov D.M., Kalashnikova D.A., Kozlov V.S., Kruglinsky I.A., Makarov V.I., Makshtas A.P., Popova S.A., Radionov V.F., Simonova G.V., Turchinovich Yu.S., Khodzher T.V., Khuriganowa O.I., Chankina O.V., Chernov D.G. Rezul'taty izmerenij fiziko-himicheskih harakteristik atmosfernogo aerozolya na nauchno-issledovatel'skom statsionare «Ledovaya baza “Mys Baranova ”» v 2018 year // Optika atmosf. i okeana. 2019. V. 32, N 6. P. 421–429; Sakerin S.M., Golobokova L.P., Kabanov D.M., Kalashnikova D.A., Kozlov V.S., Kruglinsky I.A., Makarov V.I., Makshtas A.P., Popova S.A., Radionov V.F., Simonova G.V., Turchinovich Yu.S., Khodzher T.V., Khuriganowa O.I., Chankina O.V., Chernov D.G. Measurements of physicochemical characteristics of atmospheric aerosol at research Station Ice Base Cape Baranov in 2018 // Atmos. Ocean. Opt. 2019. V. 32, N 5. P. 511–520.
  15. Romanenkov V., Rukhovich D., Koroleva P., McCarty J.L. Estimating black carbon emissions from agricultural burning // Novel Measurement and Assessment Tools for Monitoring and Management of Land and Water Resources in Agricultural Landscapes of Central Asia. Switzerland: Springer, 2014. P. 347–364.  DOI: 10.1007/978-3-319-01017-5_20.
  16. Cho M.-H., Park R.J., Yoon J., Choi Y., Jeong J.I., Labzovskii L., Fu J.S., Huang K., Jeong S.-J., Kim B.-M. A missing component of Arctic warming: Black carbon from gas flaring // Environ. Res. Lett. 2019. V. 14. P. 094011.
  17. Stohl A., Klimont Z., Eckhardt S., Kupiainen K., Shevchenko V.P., Kopeikin V.M., Novigatsky A.N. Black carbon in the Arctic: The underestimated role of gas flaring and residential combustion emissions // Atmos. Chem. Phys. 2013. V. 13. P. 8833–8855.
  18. Stohl A., Andrews E., Burkhart J., Forster C., Herber A., Hoch S., Kowal D., Lunder C., Mefford T., Ogren J. Pan-Arctic enhancements of light absorbing aerosol concentrations due to North American boreal forest fires during summer 2004 // J. Geophys. Res.: Atmos. 2006. V. 111. P. D11306.
  19. Vinogradova A.A. Emissii antropogennogo chernogo ugleroda v atmosferu: raspredelenie po territorii Rossii // Optika atmosf. i okeana. 2014. V. 27, N 12. P. 1059–1065; Vinogradova A. Anthropogenic black carbon emissions to the atmosphere: Surface distribution through russian territory // Atmos. Ocean. Opt. 2015. V. 28, N 2. P. 158–164.
  20. Popovicheva O.B., Evangeliou N., Eleftheriadis K., Kalogridis A.C., Sitnikov N., Eckhardt S., Stohl A. Black Carbon sources constrained by observations in the Russian High Arctic // Environ. Sci. Technol. 2017. V. 51. P. 3871–3879.
  21. Schacht J., Heinold B., Quaas J., Backman J., Cherian R., Ehrlich A., Herber A., Huang W.T.K., Kondo Y., Massling A., Sinha P.R., Weinzierl B., Zanatta M., Tegen I. The importance of the representation of air pollution emissions for the modeled distribution and radiative effects of black carbon in the Arctic // Atmos. Chem. Phys. 2019. V. 19. P. 11159–11183.
  22. Popovicheva O., Diapouli E., Makshtas A., Shonija N., Manousakas M., Saraga D., Uttal T., Eleftheriadis K. East Siberian Arctic background and black carbon polluted aerosols at HMO Tiksi // Sci. Total Environ. 2019. V. 655. P. 924–938.
  23. Winiger P., Andersson A., Eckhardt S., Stohl A., Semiletov I.P., Dudarev O.V., Charkin A., Shakhova N., Klimont Z., Heyes C., Gustafsson Ö. Siberian Arctic black carbon sources constrained by model and observation // Proc. Nat. Acad. Sci. 2017. V. 114. P. E1054–E1061.
  24. Winiger P., Andersson A., Eckhardt S., Stohl A., Gustafsson Ö. The sources of atmospheric black carbon at a European gateway to the Arctic // Nat. Commun. 2016. V. 7. P. 1–8.
  25. Поповичева О.Б., Кобелев В.О., Синицкий А.И., Ситников Н.М., Чичаева М.А., Хансен А. Черный углерод городских эмиссий в Арктическом регионе по данным вблизи г. Салехарда // Optika atmosf. i okeana. 2020. V. 33, N 9. P. 690–697.
  26. Popovicheva O.B., Evangeliou N., Kobelev V.O., Chichaeva M.A., Eleftheriadis K., Gregorič A., Kasimov N.S. Siberian Arctic black carbon: Gas flaring and wildfire impact // Atmos. Chem. Phys. 2022. V. 22. P. 5983–6000.
  27. Drinovec L., Močnik G., Zotter P., Prévôt A., Ruckstuhl C., Coz E., Rupakheti M., Sciare J., Müller T., Wiedensohler A. The “dual-spot” aethalometer: An improved measurement of aerosol black carbon with real-time loading compensation // Atmos. Meas. Tech. 2015. V. 5. P. 1965–1979.
  28. Zhang Y., Schnelle-Kreis J., Abbaszade G., Zimmermann R., Zotter P., Shen R.R., Schaefer K., Shao L., Prévôt A.S., Szidat S. Source apportionment of elemental carbon in Beijing, China: Insights from radiocarbon and organic marker measurements // Environ. Sci. Technol. 2015. V. 49. P. 8408–8415.
  29. Allen G.A., Miller P.J., Rector L.J., Brauer M., Su J.G. Characterization of valley winter woodsmoke concentrations in Northern NY using highly time-resolved measurements // Aerosol Air Qual. Res. 2011. V. 11. P. 519–530.
  30. Wang Y., Hopke P.K., Rattigan O.V., Xia X., Chalupa D.C., Utell M.J. Characterization of residential wood combustion particles using the two-wavelength aethalometer // Environ. Sci. Technol. 2011. V. 45. P. 7387–7393.
  31. Eleftheriadis K., Nyeki S., Psomiadou C., Colbeck I. Background aerosol properties in the European arctic // Water, Air Soil Pollut.: Focus. 2004. V. 4. P. 23–30.
  32. Stein A., Draxler R., Rolph G., Stunder B., Cohen M., Ngan F. NOAA's HYSPLIT atmospheric transport and dispersion modeling system // Bull. Am. Meteorol. Soc. 2015. V. 96. P. 2059–2077.
  33. Draxler R.R., Hess G. An overview of the HYSPLIT_4 modelling system for trajectories // Aust. Meteorol. Mag. 1998. V. 47. P. 295–308.
  34. Shukurov K.A., Postylyakov O.V., Borovski A.N., Shukurova L.M., Gruzdev A.N., Elokhov A.S., Savinykh V.V., Mokhov I.I., Semenov V.A., Chkhetiani O.G. Study of transport of atmospheric admixtures and temperature anomalies using trajectory methods at the A.M. Obukhov Institute of Atmospheric Physics // Proc. IOP Conf. Series: Earth Environ. Sci. 2019. V. 231. P. 012048. DOI: 10.1088/1755-1315/231/1/012048.
  35. Stone R.S., Sharma S., Herber A., Eleftheriadis K., Nelson D.W. A characterization of Arctic aerosols on the basis of aerosol optical depth and black carbon measurements // Elem Sci Anth. 2014. V. 2. P. 000027.
  36. Sharma S., Lavoué D., Cachier H., Barrie L., Gong S. Long-term trends of the black carbon concentrations in the Canadian Arctic // J. Geophys. Res: Atmos. 2004. V. 109. P. D15203.
  37. Eckhardt S., Quennehen B., Olivié D.J.L., Berntsen T.K., Cherian R., Christensen J.H., Collins W., Crepinsek S., Daskalakis N., Flanner M., Herber A., Heyes C., Hodnebrog Ø., Huang L., Kanakidou M., Klimont Z., Langner J., Law K.S., Lund M.T., Mahmood R., Massling A., Myriokefalitakis S., Nielsen I.E., Nøjgaard J.K., Quaas J., Quinn P.K., Raut J.-C., Rumbold S.T., Schulz M., Sharma S., Skeie R.B., Skov H., Uttal T., von Salzen K., Stohl A. Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: A multi-model evaluation using a comprehensive measurement data set // Atmos. Chem. Phys. 2015. V. 15. P. 9413–9433.
  38. Huang K., Fu J.S., Hodson E.L., Dong X., Cresko J., Prikhodko V.Y., Storey J.M., Cheng M.-D. Identification of missing anthropogenic emission sources in Russia: Implication for modeling Arctic haze // Aerosol Air Qual. Res. 2014. V. 14. P. 1799–181.
  39. Vinogradova A.A., Smirnov N.S., Korotkov V.N. Anomal'nye pozhary 2010 i 2012 years na territorii Rossii i postuplenie chernogo ugleroda v Arktiku // Optika atmosf. i okeana. 2016. V. 29, N 6. P. 482–487; Vinogradova A.A., Smirnov N.S., Korotkov V.N. Anomalous wildfires in 2010 and 2012 on the territory of Russia and supply of black carbon to the Arctic // Atmos. Ocean. Opt. 2016. V. 29, N 5. P. 545–550.