Vol. 35, issue 10, article # 2

Kistenev Yu. V., Cuisset A., Romanovskii O. A., Zherdeva A. V. Study of trace atmospheric gases at the “water – atmosphere” interface using remote and local laser IR gas analysis: review. // Optika Atmosfery i Okeana. 2022. V. 35. No. 10. P. 799–810. DOI: 10.15372/AOO20221002 [in Russian].
Copy the reference to clipboard

Abstract:

Trace atmospheric gases (TAGs) emitted by the Earth's water surface significantly impact the chemical processes in the atmosphere, weather formation, and the global climate change. The main TAGs emitted from the ocean surface and wetlands are described and analyzed. The laser absorption spectroscopy technique for local/remote gas-analysis suitable for detection of several TAGs is considered, including cavity-ring down spectroscopy and optical-acoustic spectroscopy. Approaches to the development of laser absorption spectroscopy tools for the control of a large number of TAGs using an optical parametric oscillator as a tunable laser source are considered, as well as examples of their implementations.

Keywords:

trace atmospheric gas, “water – atmosphere” interface, laser absorption spectroscopy, IR spectral range

Figures:

References:

  1. Andreae M.O., Crutzen P.J. Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry // Science. 1997. V. 276. P. 1052–1058.
  2. Newhook R., Meek M.E., Caldbick D. Concise International Chemical Assessment Document 26: Carbon Disulphide / WMO // Wissenschaftliche Verlagsgesellschaft Stuttgart. URL: https://apps.who.int/iris/handle/10665/42554 (last access: 23.06.2022).
  3. Xie H.X., Moore R.M., Miller W.L. Photochemical production of carbon disulphide in seawater // J. Geophys. Res. 1998. V. 103. P. 5635–5644.
  4. DeLeon-Rodrigueza N., Lathemb T.L., Rodriguez-Ra L.M., Barazeshc J.M., Andersond B.E., Beyersdorfd A.J., Ziembad L.D., Berginb M., Nenesb A., Konstantinidisa K.T. Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications // Proc. Nat. Acad. Sci. USA. 2013. V. 110. P. 2575–2580.
  5. Simo R., Pedros-Alio C. Role of vertical mixing in controlling the oceanic production of dimethyl sulphide // Nature. 1999. V. 402. P. 396–399.
  6. Montzka S.A., Aydin M., Battle M., Butler J.H., Saltzman E.S., Hall B.D., Clarke A.D., Mondeel D., Elkins J.W. A 350-year atmospheric history for carbonyl sulfide inferred from Antarctic firn air and air trapped in ice // J. Geophys. Res. 2004. V. 109. D22302.
  7. Watts S.F. The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide // Atmos. Environ. 2000. V. 34, N 5. P. 761–779.
  8. Liss P.S., Marandino C.A., Dahl E.E., Helmig D., Hintsa E.J., Hughes C., Johnson M.T., Moore R.M., Plane J.M.C., Quack B., Singh H.B., Stefels J., von Glasow R., Williams J. Short-lived trace gases in the surface ocean and the atmosphere //Ocean–Atmosphere Interactions of Gases and Particles. England: Springer, 2014. DOI: 10.1007/978-3-642-25643-1_1.
  9. The HITRAN Database. England, 2022. URL: https://hitran.org/ (last access: 1.06.2022).
  10. Wada E., Hattori A. Nitrogen in the Sea: Forms, Abundance, and Rate Processes. Boca Raton: CRC Press, 1991. 224 p.
  11. Salawitch R.J. Atmospheric chemistry – biogenic bromine // Nature. 2006. V. 439. P. 275–277.
  12. Yang M., Huebert B.J., Blomquist B.W., Howell S.G., Shank L.M., McNaughton C.S., Clarke A.D., Hawkins L.N., Russell L.M., Covert D.S., Coffman D.J., Bates T.S., Quinn P.K., Zagorac N., Bandy A.R., de Szoeke S.P., Zuidema P.D., Tucker S.C., Brewer W.A., Yang X., Cox R.A., Warwick N.J., Pyle J.A., Carver G.D., O’Connor F.M., Savage N.H. Tropospheric bromine chemistry and its impacts on ozone: A model study // J. Geophys. Res.: Atmos. 2005. V. 110. P. D23311. DOI: 10.1029/2005JD 006244.
  13. Carpenter L.J., Nightingale P.D. Chemistry and release of gases from the surface ocean // Chem. Rev. 2015. V. 115, N 10. P. 4015–4034.
  14. Novak G.A., Bertram T.H. Reactive VOC production from photochemical and heterogeneous reactions occurring at the air–ocean interface // Acc. Chem. Res. 2020. V. 53. P. 1014–1023.
  15. Brüggemann M., Hayeck N., George C. Interfacial photochemistry at the ocean surface is a global source of organic vapors and aerosols // Nature Commun. 2018. V. 9. DOI: 10.1038/s41467-018-04528-7.
  16. Beale R., Liss P.S., Nightingale P.D. First oceanic measurements of ethanol and propanol // Geophys. Res. Lett. 2010. V. 37, iss. 24. DOI: 10.1029/2010GL045534.
  17. Dixon J.L., Beale R., Nightingale P.D. Microbial methanol uptake in the northeast Atlantic waters // ISME J. 2011. V. 5. P. 704–716.
  18. Dixon J.L., Beale R., Nightingale P.D. Rapid biological oxidation of methanol in the tropical Atlantic: Significance as a microbial carbon source // Biogeosciences. 2011. V. 8. P. 2707–2716.
  19. Marandino C.A., de Bruyn W.J., Miller S.D., Prather M.J., Saltzman E.S. Oceanic uptake and the global atmospheric acetone budget // Geophys. Res. Lett. 2005. V. 32. DOI: 10.1029/2005GL023285.
  20. Mezcua M., Aguera A., Hernando M.D., Piedra L., Fernandez-Alba A.R. Determination of methyl tert.-butyl ether and ter.-butyl alcohol in seawater samples using purge-and-trap enrichment coupled to gas chromatography with atomic emission and mass spectrometric detection // J. Chromatogr A. 2003. V. 999. P. 81–90.
  21. Read K.A., Carpenter L.J., Arnold S.R., Beale R., Nightingale P.D., Hopkins J.R., Lewis A.C., Lee J.D., Mendes L., Pickering S.J. Multiannual observations of acetone, methanol, and acetaldehyde in remote tropical Atlantic air: Implications for atmospheric OVOC budgets and oxidative capacity // Environ. Sci. Technol. 2012. V. 46. P. 11028–11039.
  22. Heald C.L., Goldstein A.H., Allan J.D., Aiken A.C., Apel E., Atlas E.L., Baker A.K., Bates T.S., Beyersdorf A.J., Blake D.R., Campos T., Coe H., Crounse J.D., DeCarlo P.F., de Gouw J.A., Dunlea E.J., Flocke F.M., Fried A., Goldan P., Griffin R.J., Herndon S.C., Holloway J.S., Holzinger R., Jimenez J.L., Junkermann W., Kuster W.C., Lewis A.C., Meinardi S., Millet D.B., Onasch T., Polidori A., Quinn P.K., Riemer D.D., Roberts J.M., Salcedo D., Sive B., Swanson A.L., Talbot R., Warneke C., Weber R.J., Weibring P., Wennberg P.O., Worsnop D.R., Wittig A.E., Zhang R., Zheng J., Zheng W. Total observed organic carbon (TOOC) in the atmosphere: A synthesis of North American observations // Atmos. Chem. Phys. 2008. V. 8. P. 2007–2025.
  23. Singh H.B., Salas L.J., Chatfield R.B., Czech E., Fried A., Walega J., Evans M.J., Field B.D., Jacob D.J., Blake D., Heikes B., Talbot R., Sachse G., Crawford J.H., Avery M.A., Sandholm S., Fuelberg H. Analysis of the atmospheric distribution, sources, and sinks of oxygenated volatile organic chemicals based on measurements over the Pacific during TRACE-P // J. Geophys. Res.: Atmos. 2004. V. 109. P. D15S07.
  24. Beale R., Dixon J.L., Arnold S.R., Liss P.S., Nightingale P.D. Methanol, acetaldehyde and acetone in the surface waters of the Atlantic Ocean // J. Geophys. Res.: Oceans. 2013. V. 118. P. 5412–5425.
  25. Yang M., Beale R., Liss P., Johnson M., Blomquist B., Nightingale P. Air-sea fluxes of oxygenated volatile organic compounds across the Atlantic Ocean // Atmos. Chem. Phys. 2014. V. 14. P. 7499–7517.
  26. Donahue N.M., Prinn R.G. Non-methane hydrocarbon chemistry in the remote marine boundary layer // J. Geophys. Res. 1993. V. 95. P. 18387–18411.
  27. Li M., Huang X., Jianfeng L., Song Y. Estimation of biogenic volatile organic compound (BVOC) emissions from the terrestrial ecosystem in China using real-time remote sensing data // Atmos. Chem. Phys. 2012. V. 12, N 3. P. 6551–6592. DOI: 10.5194/acpd-12-6551-2012.
  28. Wilson D.F., Swinnerton J., Lamontagne R. Production of carbon monoxide and gasesous hydrocarbons in seawater – relation to dissolved organic carbon // Science. 1970. V. 168. P. 1576–1577.
  29. Atlas E.L., Ridley B.A., Hubler G., Walega J.G., Carroll M.A., Montzka D.D., Huebert B.J., Norton R.B., Grahek F.E., Schauffler S. Partitioning and budget of NOy species during the Mauna Loa observatory photochemistry experiment // J. Geophys. Res. 1992. V. 97. P. 10449–10462.
  30. Atlas E., Pollock W., Greenberg J., Heidt L., Thompson A.M. Alkyl nitrates, nonmethane hydrocarbons and halocarbon gases over the equatorial Pacific – Ocean during Saga-3 // J. Geophys. Res.: Atmos. V. 98. P. 16933–16947.
  31. Beyersdorf A.J., Blake D.R., Swanson A., Meinardi S., Rowland F.S., Davis S. Abundances and variability of tropospheric volatile organic compounds at the South Pole and other Antarctic locations // Atmos. Environ. 2010. V. 44. P. 4565–4574.
  32. Bange H.W. Gaseous Nitrogen Compounds (NO, N2O, N2, NH3) in the Ocean // Nitrogen in the Marine Environment. Chapter 2. 2008. P. 51–94.
  33. Quinn P.K., Asher W.E., Charlson R.J. Equilibria of the marine multiphase ammonia system // J. Atmos. Chem. 1992. V. 14. P. 11–30. DOI: 10.1007/BF00115219.
  34. Savoie D.L., Prospero J.M., Larsen R.J., Huang F., Izaguirre M.A., Huang T., Snowdon T.H., Custals L., Sanderson C.G. Nitrogen and sulfur species in Antarctic aerosols at Mawson, Palmer Station, and Marsh (King George Island) // J. Atmos. Chem. 1992. V. 17. P. 95. DOI: 10.1007/BF00702821.
  35. Johnson M.T., Bell T.G. Coupling between dimethylsupfide emissions and the ocean–atmosphere exchange of ammonia // Environ. Chem. 2008. V. 5. P. 259–267. DOI: 10.1071/EN08030.
  36. Ul'baev T.S., Luk'yanova T.S., Mansurov G.N. Bolotnye gazy kak odna iz estestvennyh prichin samovozgoraniya v zabolochennyh rajonah // Vestn. MGOU. 2012. V. 2. P. 161–171.
  37. Mindubaev A.Z., Belostotskij D.E., Minzanova S.T., Mironov V.F., Alimova F.K., Mironova L.G., Konovalov A.I. Metanogenez: biohimiya, tekhnologiya, primenenie // Uchen. zap. Kazan. un-ta. 2010. V. 152, kn. 2. P. 178–191.
  38. Lykov I.N., Safronova S.A., Morozenko M.I., Efremov G.V. Metagenez i global'nye klimaticheskie protsessy // Priroda. 2009. V. 8. P. 40–44.
  39. Lietti L., Groppi G., Ramella C. NH3 oxidation during the catalytic combustion of bio-masses-related fuels over Mn-substituted hexaaluminates // Catal. Lett. 1998. V. 53, N 1–2. P. 91–95.
  40. Bari S. Effect of carbon dioxide on the performance of biogas/diesel duel-fuel engine // Renewable Energy. 1996. V. 9, N 1–4. P. 1045–1048.
  41. Kovacs K.L., Bagyinka Cs., Bodrossy L., Csaki R., Fodor B., Gyorfi K., Hanczar T., Kalman M., Osz J., Perei K., Polyak B., Rakhely G., Takacs M., Toth A., Tusz J. Recent advances in biohydrogen research // Pflugers Arch. Eur. J. Physiol. 2000. V. 439, N 7. P. 81–83.
  42. Hunt J.M. Petroleum Geochemistry and Geology, Second Edition. New York: Freeman and Co, 1996. 743 p.
  43. Milkov A.V., Giuseppe E. Revised genetic diagrams for natural gases based on a global dataset of > 20,000 samples // Organic Geochem. 2018. V. 125. P. 109–120.
  44. Whiticar M.J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane // Chem. Geology. 1999. V. 161. P. 291–314.
  45. Нейштадт М.И. Мировой природный феномен – заболоченность Западно-Сибирской равнины // Изв. АН СССР. Сер. Геогр. 1971. N 1. P. 21–34.
  46. Gluhova T.V., Vomperskij S.E., Kovalev A.G. Emissiya СО2 s poverhnosti oligotrofnyh bolot yuzhno-taezhnoj zony evropejskoj territorii Rossii s uchetom mikrorel'efa // Pochvovedenie. 2014. N 1. P. 48–57.
  47. Glagolev M.V., Chistotin M.V., Shnyrev N.A., Sirin A.A. Letne-osennyaya emissiya ugleroda i metana osushennymi torfyanikami, izmenennymi pri hozyajstvennom ispol'zovanii, i estestvennymi bolotami (na primere uchastka Tomskoj oblasti) // Agrohimiya. 2008. N 5. P. 46–58.
  48. Golovatskaya E.A., Dyukarev E.A. Vliyanie faktorov sredy na emissiyu СО2 s poverhnosti oligotrofnyh torfyanyh pochv Zapadnoj Sibiri // Pochvovedenie 2012. N 6. P. 658–667.
  49. Glukhova T.V., Ilyasov D.V., Vompersky S.E., Golovchenko A.V., Manucharova N.A., Stepanov A.L. Soil respiration in alder swamp (alnus glutinosa) in Southern Taiga of European Russia depending on microrelief // Forests. 2021. V. 12. P. 496. DOI: 10.3390/f12040496.
  50. Helfter C., Gondwe M., Murray-Hudson M., Makati A., Skiba U. From sink to source: high inter-annual variability in the carbon budget of a Southern African wetland // Phil. Trans. R. Soc. A. 2021. V. 380. 20210148. DOI: 10.1098/rsta.2021.0148.
  51. Glagolev M.V. Annotirovannyj spisok literaturnyh istochnikov po rezul'tatam izmerenij potokov СН4 i СО2 na bolotah Rossii // Dinam. okr. sr. i glob. izm. klim. 2010. V. 1, N 2. P. 5–57.
  52. Friborg T., Soegaard H., Christensen T.R., Lloyd C.R., Panikov N.S. Siberian wetlands: Where a sink is a source // Geophys. Res. Lett. 2003. V. 30, N 21. P. 2129. DOI: 10.1029/2003GL017797.
  53. Kazantsev V.S. Emissiya metana iz bolotnyh ekosistem severnoj chasti Zapadnoj Sibiri. Avtoref. dis. … kand. biol. nauk. 2013. 27 p.
  54. Miglovets M.N. Emissiya metana v rastitel'nyh soobshchestvah mezooligotrofnogo bolota srednej tajgi. Avtoref. dis. … kand. biol. nauk. 2014. 23 p.
  55. Raturi A., Singh H., Kumar P., Chanda A., Shukla N. Characterizing the post-monsoon CO2, CH4, N2O, and H2O vapor fluxes from a tropical wetland in the Himalayan foothill // Environ. Monit. Assess. 2022. V. 194. P. 50.
  56. Hergoualc’h K., Dezzeo N., Verchot L.V., Martius C., van Lent J., del Agulia Pasquel J., López Gonzales M. Spatial and temporal variability of soil N2O and CH4 fluxes along a degradation gradient in a palm swamp peat forest in the Peruvian Amazon // Glob. Change Biol. 2020. V. 26. P. 7198–7216.
  57. Vourlitis G.L., Oechel W.C. The Role of Northern Ecosystems in the global Methane budget // Ecol. Studies. 1996. V. 124. P. 266–289.
  58. Kaplan J.O., Folberth G., Hauglustaine D.A. Role of methane and biogenic volatile organic compound sources in late glacial and Holocene fluctuations of atmospheric methane concentrations // Global biogeochem. cycl. 2006. V. 20, N 2. DOI: 10.1029/2005GB002590.
  59. Carmichael M.J., Bernhardt E.S., Bräuer S.L., Smith W.K. The role of vegetation in methane flux to the atmosphere: should vegetation be included as a distinct category in the global methane budget? // Biogeochemistry. 2014. V. 119. P. 1–24.
  60. Turetsky M.R., Kotowska A., Bubier J., Dise N.B., Crill P., Hornibrook E.R.C., Minkkinen K., Moore T.R., Myers-Smith I.H., Nykänen H., Olefeldt D., Rinne J., Saarnio S., Shurpali N., Tuittila E., Waddington J.M., White J.R., Wickland K.P., Wilmking M. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands // Glob. Chang. Biol. 2014. V. 20, N 7. P. 2183–2197.
  61. Akhtar H., Lupascu M., Sukri R.S., Smith T.E.L., Cobb A.R., Swarup S. Significant sedge-mediated methane emissions from degraded tropical peatlands // Environ. Res. Lett. 2021. V. 16. P. 014002.
  62. Bao T., Jia G., Xu X. Wetland Heterogeneity Determines Methane Emissions: A Pan-Arctic Synthesis // Environ. Sci. Technol. 2021. V. 55. P. 10152–10163.
  63. Ward N.D., Bianchi T.S., Martin J.B., Quintero C.J., Sawakuchi H.O., Cohen M.J. Pathways for Methane Emissions and Oxidation that Influence the Net Carbon Balance of a Subtropical Cypress Swamp // Front. Earth Sci. 2020. V. 8:573357. DOI: 10.3389/feart.2020.573357.
  64. Rinnan R., Rinnan A., Holopainen T., Holopainen J.K., Pasanen P. Emission of non-methane volatile organic compounds (VOCs) from boreal peatland microcosms-effects of ozone exposure // Atmos. Environ. 2005. V. 39. P. 921–930.
  65. Gazoanalizatory atmosfernogo vozduha. SPb., 2022. URL: https://www.optec.ru/produktsiya.html?c_dept_ id=16 (data obrashcheniya: 1.06.2022).
  66. The LGR advantage: the technology. San Jose, 2022. URL: http://www.lgrinc.com/advantages/unique-technology.php (last access: 1.06.2022).
  67. Chow K.K., Short M., Zeng H. A comparison of spectroscopic techniques for human breath analysis // Biomed. Spectrosc. Imag. 2012. V. 1. P. 339–353.
  68. de Gouw J.A., Te Lintel Hekkert S., Mellqvist J., Warneke C., Atlas E.L., Fehsenfeld F.C., Fried A., Frost G.J., Harren F.J.M., Holloway J.S., Lefer B., Lueb R., Meagher J.F., Parrish D.D., Patel M., Pope L., Richter D., Rivera C., Ryerson T.B., Samuelsson J., Walega J., Washenfelder R.A., Weibring P., Zhu X. Airborne measurements of ethene from industrial sources using laser photo-acoustic spectroscopy // Environ. Sci. Technol. 2009. V. 43, N 7. P. 2437–2442.
  69. Bijnen F.G.C., Reuss J., Harren F.J.M. Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection // Rev. Sci. Instrum. 1996. V. 67. P. 2914.
  70. Belov M.L., Gorodnichev V.A., Fedotov Yu.V., Kozintsev V.I. Lazernyj optiko-akusticheskij analiz mnogokomponentnyh gazovyh smesej. M.: Izd-vo MGTU im. N.E. Baumana, 2003. 352 p.
  71. Miklós A., Hess P., Bozóki Z. Application of acoustic resonators in photoacoustic trace gas analysis // Rev. Sci. Instrum. 2001. V. 72, N 4. P. 1937–1955.
  72. Zéninari V., Vallon R., Risser C., Parvitte B. Photoacoustic detection of methane in large concentrations with a Helmholtz sensor: Simulation and experimentation // Int. J. Thermophys.2016. V. 37, N 1. P. 1–11.
  73. Karapuzikov A.A., Sherstov I.V., Karapuzikov A.I., Shtyrov M.Y., Dukhovnikova N.Y., Zenov K.G., Boyko A.A., Starikova M.K., Tikhonyuk I.I., Miroshnichenko I.B., Miroshnichenko M.B., Kolker D.B., Myakishev Y.B., Lokonov V.N., Kistenev Y.V., Kuzmin D.A. LaserBreeze gas analyzer for noninvasive diagnostics of air exhaled by patients // Phys. Wave Phenom. 2014. V. 22, N 3. P. 189–196.
  74. Santagata R., Tran D., Argence B., Lopez O., Tokunaga S., Wiotte F., Mouhamad H., Goncharov A., Abgrall M., Le Coq Y., Alvarez-Martinez H., Targat R.Le, Lee W., Xu D., Pottie P.-E., Darquié B., Amy-Klein A. High-precision methanol spectroscopy with a widely tunable SI-traceable frequency-comb-based mid-infrared QCL // Optica. 2019. V. 6, N 4 P. 411–423.
  75. Jinbao X., Feng Zh., Kolomenskii A., Bounds J., Zhang S., Amani M., Fernyhough L.J., Schuessler H. Sensitive acetone detection with a mid-IR interband cascade laser and wavelength modulation spectroscopy // OSA Continuum. 2019. V. 2, N 3. P. 640–654.
  76. Zhenhai Xi, Kaiyuan Zheng, Chuantao Zheng, Haipeng Zhang, Fang Song, Chunguang Li, Weilin Ye, Yu Zhang, Yiding Wang, Frank K. Near-Infrared Dual-Gas Sensor System for Methane and Ethane Detection Using a Compact Multipass Cell // Front. Phys. 2022. DOI: 10.3389/fphy.2022.843171.
  77. Löhden B., Kuznetsova S., Sengstock K., Baev V.M., Goldman A., Cheskis S., Pálsdóttir B. Fiber laser intracavity absorption spectroscopy for in situ multicomponent gas analysis in the atmosphere and combustion environments // Appl. Phys. B. 2011. V. 102. P. 331–344. DOI: 10.1007/s00340-010-3995-9.
  78. Sun Yi, Liu Q., Zha S., Qiu X., Chang H.-R., Feng S., Guo G., He X., He Q., C. Li. Sub-ppb nitrogen dioxide detection based on resonant photoacoustic spectroscopy // Microw. Opt. Technol. Lett. 2021. V. 63. P. 2058–2062.
  79. Xue Zheng-Yue, Li Jun, Liu Xiao-Hai, Wang Jing-Jing, Gao Xiao-Ming, Tan Tu. Measurement and profile inversion of atmospheric N2O absorption spectrum based on laser heterodyne detection // Acta Phys. Sin. 2021. V. 70, N 21. P. 217801. DOI: 10.7498/aps.70.20210710.
  80. Jinyi Li, Sen Yang, Ruixue Wang, Zhenhui Du, Yingying Wei. Ammonia detection using hollow waveguide enhanced laser absorption spectroscopy based on a 9.56 mm quantum cascade laser // AOPC 2017: Opt. Spectrosc. Imag. 2017. DOI: 10.1117/12.2285338.
  81. Qiuwu Liu, Yafeng Chen, Jie Wang, Jian Huang, Shunxing Hu. Measurement of atmospheric NO2 profile using three-wavelength dual-differential absorption lidar // Proc. SPIE. 2017. V. 10605, id. 106053L. DOI: 10.1117/12.2295725.
  82. Liang A., Han G., Ma X., Xiang C., Zheng Y., Zhang T., Xu H., Gong W. Development of differential absorption LiDAR system at 1.57 mm for sensing carbon dioxide in China // Int. Geosci. Remote Sens. Symp. 2017. P. 5268–5271.
  83. Li J., Chen W., Yu B. Recent progress on infrared photoacoustic spectroscopy techniques // Appl. Spectr. Rev. 2011. V. 46. P. 440–471.
  84. Vodopyanov K.I., Maffetone J.P., Zwieback I., Ruderman W. AgGaS2 optical parametric oscillator continuously tunable from 3.9 to 11.3 mm // Appl. Phys. Lett. 1999. V. 75. P. 1204.
  85. Esteban-Martin A., Marchev G., Badikov V., Panyutin V., Petrov V., Shevyrdyaeva G., Badikov D., Starikova M., Sheina S., Fintisova A., Tyazhev A. High-energy optical parametric oscillator for the 6 mm spectral range based on HgGa2S4 pumped at 1064 nm // Laser Photon. Rev. 2013. V. 7, N 6. P. L89–L92.
  86. Kostyukova N., Boyko A., Badikov V., Badikov D., Shevyrdyaeva G., Panyutin V., Marchev G., Kolker D., Petrov V. Widely tunable in the mid-IR BaGa4Se7 optical parametric oscillator pumped at 1064 nm // Opt. Lett. 2016. V. 41. P. 035039.
  87. Chuchumishev D., Trifonov A., Oreshkov B., Xu X., Buchvarov I. High-energy picosecond kHz optical parametric oscillator/amplifier tunable between 3 and 3.5 mm // Appl. Phys. B. 2017. V. 124, N 7. ID 147.
  88. Huang H., Wang S., Liu X., Shen D. Simultaneous dual-wavelength nanosecond mid-infrared optical parametric oscillator // Infrared Phys. Technol. 2018. V. 93. P. 91–95.
  89. Matvienko G.G., Romanovskii O.A., Sadovnikov S.A., Sukhanov A.Ya., Kharchenko O.V., Yakovlev S.V. Study of the possibility of using a parametric-light-generator-based laser system for lidar probing of the composition of the atmosphere // J. Opt. Technol. 2017. V. 84, N 6. P. 408–417.
  90. Romanovskii O.A., Sadovnikov S.A., Kharchenko O.V., Yakovlev S.V. Broadband IR lidar for gas analysis of the atmosphere // Appl. Spectrosc. 2018. V. 85, N 3. P. 457.
  91. Cole B., Goldberg L., Chinn S., Pomeranz L.A., Zawilski K.T., Schunemann P.G., McCarthy J. Compact and efficiency mid-IR OPO source pumped by a passively Q-switched Tm:YAP laser// Opt. Lett. 2018. V. 43. P. 1099–1102.
  92. Kolker D.B., Pustovalova R.V., Starikova M.K., Karapuzikov A.I., Karapuzikov A.A., Kuznetsov O.M., Kistenev Yu.V. Nanosekundnyj parametricheskij generator sveta v srednem IK-diapazone s dvuhprohodnoj nakachkoj // Pribory i tekhnika eksperimenta. 2012. N 2. P. 124–128.
  93. Devi K., Padhye A., Schunemann P.G., Ebrahim-Zadeh M. Multimilliwatt, tunable, continuous-wave, mid-infrared generation across 4.6–4.7 mm based on orientation-patterned gallium phosphide // Opt. Lett. 2018. V. 43. P. 2284.
  94. Fu Q., Xu L., Liang S., Shepherd D.P., Richardson D.J., Alam S. Widely tunable, narrow-linewidth, high-peak-power, picosecond midinfrared optical parametric amplifier // IEEE J. Sel. Top. Quant. Electron. 2018. V. 24. P. 5100706.
  95. Boyko A.A., Schunemann P.G., Guha S., Kostyukova N.Y., Kolker D.B., Panyutin V.L., Marchev G.M., Pasiskevicius V., Zukauskas A., Mayorov F., Petrov V. Optical parametric oscillator pumped at ~ 1 mm with intracavity mid-IR difference-frequency generation in OPGaAs // Opt. Mater. Express. 2018. V. 8. P. 549.
  96. Ganikhanov F., Caughey T., Vodopyanov K.L. Narrow-linewidth middle-infrared ZnGeP2 optical parametric oscillator // J. Opt. Soc. Am. B. 2001. V. 18, N 6. P. 818–822.
  97. Schlup P., Baxter G.W., McKinnie I.T. Single-mode near- and mid-infrared periodically poled lithium niobate optical parametric oscillator // Opt. Commun. 2000. V. 176. P. 267–271.
  98. Wang Li, Boyko A.A., Schirrmacher A., Büttner E., Chen W., Ye N., Petrov V. Narrow-band periodically poled lithium niobate nonresonant optical parametric oscillator // Opt. Lett. 2019. V. 44, N 23. P. 5659–5662.
  99. Erushin E., Nyushkov B., Ivanenko A., Korel I., Boyko A., Kostyukova N., Kolker D. Spectral narrowing and wavelength tuning in injection-seeded pulsed optical parametric oscillator for photoacoustic methane analyzer // CLEO/Europe-EQEC. 2021. 172135. DOI: 10.1109/CLEO/Europe-EQEC52157.2021.9542063.
  100. Kistenev Yu.V., Skiba V.E., Prischepa V.V., Vrazhnov D.A., Borisov A.V. Super-resolution reconstruction of noisy gas-mixture absorption spectra using deep learning // J. Quant. Spectrosc. Radiat. Transfer. 2022. DOI: 10.1016/j.jqsrt.2022.108278.
  101. Bozóki Z., Pogány A., Szabó G. Photoacoustic instruments for practical applications: Present, potentials, and future challenges // Appl. Spec. Rev. 2011. V. 46. P. 1–37.
  102. Boyko A.A., Zenov K.G., Starikova M.K., Kolker D.B., Karapuzikov A.A., Kistenev Y.V., Kuzmin D.A. Twin HgGa2S4 optical parametric oscillator at 4.3–10.78 mm for biomedical applications // Proc. SPIE. 2014. V. 9448. P. 944806.
  103. Kolker D.B., Pustovalova R.V., Starikova M.K., Karapuzikov A.I., Karapuzikov A.A., Kuznetsov O.M., Kistenev Yu.V. Nanosekundnyj parametricheskij generator sveta v srednem IK-diapazone s dvuhprohodnoj nakachkoj // Pribory i tekhnika eksperimenta. 2012. N 2. P. 124.
  104. Kolker D.B., Pustovalova R.V., Starikova M.K., Karapuzikov A.I., Karapuzikov A.A., Kuznetsov O.M., Kistenev Y.V. Parametricheskij generator v oblasti 2.4–4.3 mm s nakachkoj malogabaritnym nanosekundnym Nd:YAG-lazerom // Optika atmosf. i okeana. 2011. V. 24, N 10. P. 910–914; Kolker D.B., Pustovalova R.V., Starikova M.K., Karapuzikov A.I., Karapuzikov A.A., Kuznetsov O.M., Kistenev Y.V. Оptical parametric oscillator within 2.4–4.3 mm pumped with a nanosecond ND:YAG laser // Atmos. Ocean. Opt. 2012. V. 25, N 1. P. 77–81.
  105. Gorodnichev V.A. Razrabotka metodov i optiko-elektronnyh sredstv lazernogo operativnogo kontrolya mnogokomponentnyh gazovyh smesej sostavlyayushchih raketnyh topliv i drugih toksichnyh veshchestv: Dis. … d-ra tekh. nauk. M.: Mosk. gos. tekhn. un-t im. N.E. Baumana, 2009. 307 p.
  106. Mitev V., Babichenko S., Borelli R., Fiorani L., Grigorov I., Nuvoli M., Palucci M., Pistilli A., Puiu Ad., Rebane O., Santoro S. Mid-IR DIAL for high-resolution mapping of explosive precursors // Proc. SPIE. 2013. V. 8894. P. 88940S-1.
  107. Romanovskii O.A., Sadovnikov S.A., Yakovlev S.V., Tuzhilkin D.A., Kharchenko O.V., Kravtsova N.S. Mobile 3.4-mm differential absorption lidar system for remote sensing of the atmospheric methane // Proc. SPIE. 2021. V. 119162021. P. 119161T.
  108. Yakovlev S., Sadovnikov S., Kharchenko O., Kravtsova N. Remote sensing of atmospheric methane with IR OPO lidar system // Atmosphere. 2020. V. 11, N 1. P. 70. DOI: 10.3390/atmos11010070.
  109. Prasad N.S., Geiger A.R. Remote sensing of propane and methane by means of a differential absorption lidar by topographic reflection // Opt. Engin. 1996. V. 35, N 4. P. 1105–1111.
  110. Borisov A.V., Syrkina A.G., Kuz'min D.A., Ryabov V.V., Boyko A.A., Zaharova O., Zasedatel' V.S., Kistenev Y.V. Application of machine learning and laser optical-acousticspectroscopy to study the profile of exhaled air volatile markers of acute myocardial infarction // J. Breath Res. 2021. V. 15, N 2. P. 027104.
  111. Sherstov I.V., Kolker D.B. Photoacoustic methane gas analyser based on a 3.3-mm optical parametric oscillator// Quant. Electron. 2020. V. 50, N 11. P. 1063.