Vol. 35, issue 08, article # 4

Serdyukov V. I., Sinitsa L. N., Emelyanov N. M. Study of the R-branch of the 3ν3 band of 13CH4 in the 1 μm region. // Optika Atmosfery i Okeana. 2022. V. 35. No. 08. P. 619–625. DOI: 10.15372/AOO20220804 [in Russian].
Copy the reference to clipboard

Abstract:

The absorption spectrum of 13CH4 in the range from 9000 to 9200 cm-1 is studied using a Bruker IFS-125M Fourier spectrometer at temperatures from 208 to 296 K. The lines of the R-branch of the 3ν3 13CH4 band are identified up to the rotational quantum number J = 11. The list of identified lines includes nine previously unknown lines with high rotational quantum numbers. For the first time, 32 levels of the state (0030) of the 13CH4 molecule were interpreted according to the symmetry types (А1, А2, F1, F2, E) up to J = 10.

Keywords:

Fourier spectroscopy, absorption spectrum, methane, line identification, 3n3 band

References:

1. Warneck P. Chemistry of the Natural Atmosphere. New York: Academic, 2000. 757 p.
2. Ваzhin N.M. Metan v atmosfere // Sorosovskij obrazovatel'nyj zhurnal. 2000. V. 6, N 3. P. 52–57.
3. Sepulveda E., Schneider M., Hase F., García O.E., Gomez-Pelaez A., Dohe S., Blumenstock T., Guerra J.C. Long-term validation of tropospheric column-averaged CH4 mole fractions obtained by mid-infrared ground-based FTIR spectrometry // Atmos. Meas. Tech. 2012. V. 5, N 6. P. 1425–1441.
4. Seiler W., Conrad R., Dickinson R.E. The Geophysiology of Amazonia: Vegetation and Climate Interactions / R.E. Dickinson (ed.). 1987. P. 133–160.
5. Schaefer H., Mikaloff Fletcher S.E., Veidt C., Lassey K.R., Brailsford G.W., Bromley T.M., Dlugokencky E.J., Michel S.E., Miller J.B., Levin I., Lowe D.C., Martin R.J., Vaughn B.H., White J.W.C. A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by 13CH4 // Science. 2016. V. 352, N 6281. P. 80–84.
6. Boudon V., Rey M., Loete M. The vibrational levels of methane obtained from analyses of high-resolution spectra // J. Quant. Spectros. Radiat. Transfer. 2006. V. 98, N 3. P. 394–404.
7. Margolis J.S., Fox K. Infrared absorption spectrum of CH4 at 9050 cm-1 // J. Chem. Phys. 1968. V. 49, N 5. P. 2451–2452.
8. Maillard J.P., Combes M., Encrenaz T., Lecacheux J. New infrared spectra of the Jovian planets from 12000 to 4000 cm-1 by Fourier transform spectroscopy. I. Study of Jupiter in the 3ν3 CH4 Band // Astron. Astrophys. 1973. V. 25. P. 219.
9. Gordon I.E., Rothman L.S., Hill C., Kochanov R.V., Tan Y., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Perevalov V.I., Perrin A., Shine K.P., Smith M.-A.H., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Barbe A., Császár A.G., Devi V.M., Furtenbacher T., Harrison J.J., Hartmann J.-M., Jolly A., Johnson T.J., Karman T., Kleiner I., Kyuberis A.A., Loos J., Lyulin O.M., Massie S.T., Mikhailenko S.N., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A.V., Polyansky O.L., Rey M., Rotger M., Sharpe S.W., Sung K., Starikova E., Tashkun S.A., Vander Auwera J., Wagner G., Wilzewski J., Wcisło P., Yu S., Zak E.J. The HITRAN 2016 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 3–69.
10. Campargue A., Béguier S., Zbiri Y., Mondelain D., Kassi S., Karlovets E.V., Nikitin A.V., Rey M., Starikova E., Tuterev V. The 13CH4 absorption spectrum in the Icosad range (6600–7692 cm-1) at 80 K and 296 K: Empirical line lists and temperature dependence // J. Mol. Spectrosc. 2016. V. 326. P. 115–121.
11. Campargue A., Le W., Kassi S., Masat M., Votava O. Temperature dependence of the absorption spectrum of CH4 by high resolution spectroscopy at 81 K: (II) The icosad region (1.49–1.30 mm) // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 9. P. 1141–1151.
12. Hippler M., Quack M. High-resolution Fourier transform infrared and cw-diode laser cavity ringdown spectroscopy of the ν2 + 2ν3 band of methane near 7510 cm-1 in slit jet expansions and at room temperature // J. Chem. Phys. 2002. V. 116, N 14. P. 6045–6055.
13. Kochanov V.P., Serdyukov V.I., Sinitsa L.N. Use of the F - 2: LiF colour-centre laser in intracavity laser spectroscopy // Opt. Acta: Inter. J. Opt. 1985. V. 32, N 9–10. P. 1273–1280.
14. Serdyukov V.I., Sinitsa L.N., Lugovskoj A.A., Emel'yanov N.M. Nizkotemperaturnaya kyuveta dlya issledovaniya spektrov pogloshcheniya parnikovyh gazov // Optika atmosf. i okeana. 2018. V. 31, N 11. P. 930–936; Serdyukov V.I., Sinitsa L.N., Lugovskoi A.A., Emelyanov N.M. Low-temperature cell for studying absorption spectra of greenhouse gases // Atmos. Ocean. Opt. 2019. V. 32, N 2. P. 220–226.
15. Kruglova T.V., Shcherbakov A.P. Avtomaticheskij poisk linij v molekulyarnyh spektrah na osnove metodov neparametricheskoj statistiki. Regulyarizatsiya v otsenke parametrov spektral'nyh linij // Opt. i spektroskop. 2011. V. 111, N 3. P. 383–386.
16. Gertsberg G. Kolebatel'nye i vrashchatel'nye spektry mnogoatomnyh molekul. M.: Inostr. lit-ra, 1949. 648 p.
17. Sinitsa L.N., Serdyukov V.I., Lugovskoj A.A. Spektr pogloshcheniya polosy (0120)–(0000) 13CH4  pri nizkoj temperature. Identifikatsiya spektra // Optika atmosf. i okeana. 2020. V. 33, N 9. P. 668–676.