Vol. 35, issue 06, article # 6

Pol'kin V. V., Panchenko M. V. Temporal variability of submicron and coarse aerosol concentrations in the surface air layer at the Aerosol Station of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk (2000-2020). // Optika Atmosfery i Okeana. 2022. V. 35. No. 06. P. 471–476. DOI: 10.15372/AOO20220606 [in Russian].
Copy the reference to clipboard

Abstract:

The long-term temporal variability of the microstructural characteristics of aerosol in the surface air layer, measured in the monitoring mode at the aerosol station of IAO SB RAS in 2000–2020, is analyzed. Estimates are made on the basis of the concentrations of submicron (Nf) and coarse (Nc) particles and their ratio Nf/Nc. Two data arrays are considered: “full” and for the “background” aerosol weather type. The range of variations in the annual average values of the total concentration of particles N(> 0.2 mm) is found to be 8–50 cm-3, and for background situations, 5–30 cm-3. No reliable long-term trends in the characteristics under study are revealed. Spectral analysis of the monthly average concentrations for the “background” array shows the presence of a significant (with a probability of 0,95) time period of about a year for Nf/Nc and Nf and its absence for Nc.

Keywords:

submicron and coarse atmospheric aerosol, temporal variability, background aerosol, Western Siberia

References:

1. IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (eds.). Cambridge, United Kingdom, New York: Cambridge University Press, 2013. 1535 p. DOI: 10.1017/CBO9781107415324.
2. URL: https://www.ipcc.ch/ (last access: 14.03.2022).
3. Boucher O., Randall D., Artaxo P., Bretherton C., Feingold G., Forster P., Kerminen V.-M., Kondo Y., Liao H., Lohmann U., Rasch P., Satheesh S.K., Sherwood S., Stevens B., Zhang X.Y. Clouds and Aerosols // Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press, 2014. P. 571–657.
4. WMO/GAW Aerosol Measurement Procedures: Guidelines and Recommendations. Geneva: WMO, 2003. N 153. 67 p.
5. WMO/GAW Aerosol Measurement Procedures, Guidelines and Recommendations. Geneva: WMO, 2016. N 227. 103 p.
6. WMO Global Atmosphere Watch (GAW) Implementation Plan: 2016–2023. Geneva: WMO, 2017. N 228. 84 p.
7. Satellite aerosol remote sensing over land / A.A. Kokhanovsky, G. de Leeuw (eds.). Chichester: Springer, Praxis, 2009. 398 p. DOI: 10.1007/978-3-540-69397-0.
8. von Hoyningen-Huene W., Yoon J., Vountas M., Istomina L.G., Rohen G., Dinter T., Kokhanovsky A.A., Burrows J.P. Retrieval of spectral aerosol optical thickness over land using ocean color sensors MERIS and SeaWiFS // Atmos. Meas. Tech. 2011. V. 4, N 2. P. 151–171.
9. Belov V.V., Tarasenkov M.V., Engel M.V., Gridnev Yu.V., Zimovaya A.V., Abramochkin V.N., Poznakharev E.S., Fedosov A.V., Kudryavtsev A.N. Atmosfernaya korrektsiya sputnikovyh izobrazhenij zemnoj poverhnosti v opticheskom diapazone dlin voln. Opticheskaya svyaz' na rasseyannom izluchenii // Optika atmosf. i okeana. 2019. V. 32, N 9. P. 753–757; Belov V.V., Tarasenkov M.V., Engel M.V., Gridnev Yu.V., Zimovaya A.V., Abramochkin V.N., Poznakharev E.S., Fedosov A.V., Kudryavtsev A.N. Atmospheric correction of satellite images of the Earth’s surface in the optical wavelength range. Optical communication based on scattered radiation // Atmos. Ocean. Opt. 2020. V. 33, N 1. P. 80–84.
10. Tarasenkov M.V., Zimovaya A.V., Belov V.V., Engel' M.V. Vosstanovlenie koeffitsientov otrazheniya zemnoj poverhnosti po sputnikovym izmereniyam MODIS s uchetom polyarizatsii izlucheniya // Optika atmosf. i okeana. 2019. V. 32, N 8. P. 641–649; Tarasenkov M.V., Zimovaya A.V., Belov V.V., Engel M.V. Retrieval of reflection coefficients of the Earth’s surface from modis satellite measurements considering radiation polarization // Atmos. Ocean. Opt. 2020. V. 33, N 2. P. 179–187.
11. Rozenberg G.V. Rasseyanie sveta v zemnoj atmosfere // Uspekhi fiz. nauk. 1960. V. 71, iss. 2. P. 173–213.
12. Yunge H. Himicheskij sostav i radiaktivnost' atmosfery // M.: Mir, 1965. 424 p.
13. Rozenberg G.V., Sandomirskij A.B. Opticheskaya stratifikatsiya atmosfernogo aerozolya // Izv. AN SSSR. Fiz. atmosf. i okeana. 1971. V. 7, N 7. P. 737–749.
14. Bullrich K. Scattering Radiation in the atmosphere and the natural aerosol // Adv. Geophys. 1964 V. 10. P. 99–260.
15. Zuev V.E. Prozrachnost' atmosfery dlya vidimyh i infrakrasnyh luchej. M.: Sovetskoe radio, 1966. 317 p.
16. Rozenberg G.V. Opticheskie issledovaniya atmosfernogo aerozolya // Uspekhi fiz. nauk. 1968. V. 95, iss. 1. P. 159–208.
17. Rozenberg G.V. Svojstva atmosfernogo aerozolya po dannym opticheskogo issledovaniya // Izv. AN SSSR. Fiz. atmosf. i okeana. 1967. V. 3, N 9, P. 936–949.
18. Atmosfernyj aerozol' i ego vliyanie na perenos izlucheniya. L.: Gidrometeoizdat, 1978. 119 p.
19. Budyko M.I., Golitsyn G.S., Izrael' Yu.A. Global'nye klimaticheskie katastrofy. M.: Gidrometeoizdat, 1986. 160 p.
20. Rozenberg G.V. Vozniknovenie i razvitie atmosfernogo aerozolya – kineticheski obuslovlennye parametry // Izv. AN SSSR. Fiz. atmosf. i okeana. 1983. V. 19, N 1. P. 21–35.
21. Boucher O., Bellassen V., Benveniste H., Ciais P., Criqui P., Guivarch C., Le Treut H., Mathy S., Seferian R. In the wake of Paris Agreement, scientists must embrace new directions for climate change research // PNAS. 2016 V. 113, N 27. P. 7287–7290. DOI: 10.1073/pnas.1607739113.
22. https://pnas.org/content/pnas/113/27/7287.full.pdf (last access: 14.03.2022).
23. Kozlov V.S., Panchenko M.V., Tumakov A.G., Shmargunov V.P., Yausheva E.P. Some peculiarities of the mutual variability of the content of soot and sub-micron aerosol in the near-ground air layer // J. Aerosol Sci. 1997. V. 28, suppl. 1. P. 231–232.
24. Panchenko M.V., Pol’kin V.V., Pol’kin Vas.V., Kozlov V.S., Yausheva E.P., Shmargunov V.P. Raspredelenie po razmeram «suhoj osnovy» chastits v prizemnom sloe atmosfery prigorodnogo rajona g. Tomska v ramkah empiricheskoj klassifikatsii tipov «aerozol'noj pogody» // Optika atmosf. i okeana. 2019. V. 32, N 7. P. 539–547; Panchenko M.V., Pol’kin V.V., Pol’kin Vas.V., Kozlov V.S., Yausheva E.P., Shmargunov V.P. Size distribution of dry matter of particles in the surface atmospheric layer in the suburban region of Tomsk within the empirical classification of aerosol weather types // Atmos. Ocean. Opt. 2019. V. 32, N 6. P. 655–662.
25. Shmargunov V.P., Pol'kin V.V. Aerozol'nyj schetchik na baze AZ-5 // Pribory i tekhnika eksperimenta. 2007. N 2. P. 165.
26. Panchenko M.V., Sviridenkov M.A., Terpugova S.A., Kozlov V.S. Aktivnaya spektronefelometriya v issledovanii mikrofizicheskih harakteristik submikronnogo aerozolya // Optika atmosf. i okeana. 2004. V. 17, N 5–6. P. 428–436.
27. Panchenko M.V., Pol'kin V.V. Predstavlenie o mikrostrukture troposfernogo aerozolya Sibiri na osnove izmerenij fotoelektricheskim schetchikom // Optika atmosf. i okeana. 2001. V. 14, N 6–7. P. 526–537.
28. Panchenko M.V., Kozlov V.S., Pol'kin V.V., Terpugova S.A., Tumakov A.G., Shmargunov V.P. Vosstanovlenie opticheskih harakteristik troposfernogo aerozolya Zapadnoj Sibiri na osnove obobshchennoj empiricheskoj modeli, uchityvayushchej pogloshchayushchie i gigroskopicheskie svojstva chastits // Optika atmosf. i okeana. 2012. V. 25, N 1. P. 46–54.