Vol. 35, issue 04, article # 6

Anufrik S. S., Volodenkov A. P., Znosko K. F., Losev V. F. Computer simulation of XeCl laser. // Optika Atmosfery i Okeana. 2022. V. 35. No. 04. P. 284–287. DOI: 10.15372/AOO20220406 [in Russian].
Copy the reference to clipboard

Abstract:

The emission characteristics of a small-size XeCl laser (discharge plasma volume is ~ 10 cm3) are calculated based on a model taking into account specific features of operation of the excitation system, active medium, and cavity. Good agreement with experimental results is obtained.

Keywords:

XeCl laser, LC circuit, lasing energy, basing parameters

References:

  1. Smit K., Tomson P. Chislennoe modelirovanie gazovyh lazerov. M.: Mir, 1981. 515 p.
  2. Mak-Daniel' I. Gazovye lazery. M.: Mir, 1988. 552 p.
  3. Roudz Ch., Brau Ch. Eksimernye lazery. M.: Mir, 1988. 245 p.
  4. Baranov V.Yu., Borisov V.M., Stepanov Yu.Yu. Elektrorazryadnye eksimernye lazery na gapogenidah blagorodnyh gazov. M.: Energoatomizdat, 1988. 216 p.
  5. Bojchenko A.M., Panchenko A.N., Tarasenko V.F., Tkachev A.N., Yakovlenko S.I., Panchenko N.A. Plazmennye i gazovye lazery Tomsk: STT, 2017. 314 p.
  6. Morgan W.L., Penetrante B.M. ELENDIF: A time-dependent Boltzmann solver for partially inized plasmas // Plasma Chem. Plasma Process. 1992. V. 12, N 4. P. 49–476.
  7. Hagelaar G.J.M., Pitchford L.С. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models // Plasma Sources Sci. Technol. 2005. V. 14, N 1. P. 1–12.
  8. Hagelaar G.J.M., Pitchford L.C. Bolsig+ [Electronic resourse]. URL: http://www.codiciel.fr/plateforme/ plasma/bolsig/bolsig.php (last access: 16.02.2020).
  9. Rajzer Yu.P. Fizika gazovogo razryada. M.: Nauka, 1987. 686 p.
  10. Anufrik S.S, Volodenkov A.P., Znosko K.F. Modelling of electro-discharge XeCl lasers excitation systems // Proc. SPIE. 2008. V. 7009. Р. 70090P–70090Р9.
  11. Anufrik S.S., Volodenkov A.P., Znosko K.F. Methods of XeCl-lasers computer modeling // Proc. Intern. Conf. on Advanced Optoelectronics and Lasers (CAOL). Kharkov, 2008. P. 80–83.
  12. Anufrik S.S., Volodenkov A.P., Znosko K.F. Influence of the preionization system on the lasing energy of a XeCl laser // J. Opt. Technol. 2000. V. 67, N 11. P. 961–967.
  13. Anufrik S.S., Volodenkov A.P., Losev V.F., Znosko K.F. Modeling of the active medium based on XeCl molecules with allowance for the halogencarrier regeneration process // Russ. Phys. J. 2012. V. 54. P. 1264–1271.
  14. Anufrik S., Volodenkov A., Znosko K. Modeling of emission characteristics of XeCl excilamps in pulse-periodic mode of work // High Temp. Mater. Process. 2014. V. 3, N 18. P. 181–196.
  15. Anufrik S.S., Anufrik A.S., Volodenkov A.P., Znosko K.F. Model' aktivnoj sredy XeCl-lazera: materialy doklada // VI Mezhdunar. konf. «Lazernaya fizika i opticheskie tekhnologii». Grodno, Belarus'. 2006. V. 1. P. 168–170.
  16. Anufrick S.S., Volodenkov A.P., Znosko K.F. XeCl mini laser // Proc. XIII Belarusian-Serbian Symposium “Physics and Diagnostics of Laboratory and Astrophysical Plasmas”, December 13–17, 2021, Minsk, Belarus. P. 88–91.