Vol. 35, issue 01, article # 12

Zuev V. V., Saveljeva E. S., Pavlinskii A. V. Features of the stratospheric polar vortex weakening prior to breakdown. // Optika Atmosfery i Okeana. 2022. V. 35. No. 01. P. 81–83. DOI: 10.15372/AOO20220112 [in Russian].
Copy the reference to clipboard

Abstract:

We consider the features of the weakening of the stratospheric polar vortex that precede its breakdown. To analyze the abnormal dynamics of the polar vortices, we used the method of estimating the main parameters of the vortex by delineating its edges using the geopotential values determined from the maximum temperature gradient and maximum wind speed according to the ERA5 reanalysis data. As a result, we showed that the criteria for the abnormal weakening of the polar vortex preceding its breakdown is a decrease in the vortex area to less than 10 million km2 and a subsequent decrease in the average wind speed along the vortex edge below 30 and 45 m/s in the lower and middle stratosphere, respectively. In this case, the polar vortex becomes a small cyclone (characterized by high temperatures and the absence of a dynamic barrier) and collapses within three weeks.

Keywords:

stratospheric polar vortices, polar stratospheric clouds, polar vortex edge, polar vortex area, wind speed along the vortex edge

Figures:

References:

1. Zuev V.V., Savel'eva E.S., Pavlinskij A.V. Analiz dinamiki arkticheskogo polyarnogo vihrya vo vremya vnezapnogo stratosfernogo potepleniya v yanvare 2009 year // Problemy Arktiki i Antarktiki. 2021. V. 67, N 2. P. 134–146.
2. Lawrence Z.D., Manney G.L., Wargan K. Reanalysis intercomparisons of stratospheric polar processing diagnostics // Atmos. Chem. Phys. 2018. V. 18, N 18. P. 13547–13579.
3. Smith M.L., McDonald A.J. A quantitative measure of polar vortex strength using the function M // J. Geophys. Res. 2014. V. 119, N 10. P. 5966–5985.
4. Zuev V.V., Savel'eva E.S., Pavlinskij A.V. Bespretsedentnaya ozonovaya anomaliya v arkticheskoj strato-sfere v zimne-vesennij period 2020 year // Dokl. AN. Nauki o Zemle. 2020. V. 495, N 2. P. 36–40.
5. Holton J. An Introduction to Dynamic Meteorology. California: Academic Press, 2004. 535 p.
6. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., de Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.N. The ERA5 global reanalysis // Quant. J. R. Meteorol. Soc. 2020. V. 146, N 729. P. 1–51.
7. Zuev V.V., Savelieva E. Arctic polar vortex dynamics during winter 2006/2007 // Polar Sci. 2020. V. 25. P. 100532.
8. Newman P.A., Nash E.R. The unusual Southern Hemisphere stratosphere winter of 2002 // J. Atmos. Sci. 2005. V. 62, N 3. P. 614–628.
9. Charlton A.J., O’Neill A., Lahoz W.A., Berrisford P. The splitting of the stratospheric polar vortex in the Southern Hemisphere, September 2002: Dynamical evolution // J. Atmos. Sci. 2005. V. 62, N 3. P. 590–602.
10. Stolarski R.S., McPeters R.D., Newman P.A. The ozone hole of 2002 as measured by TOMS // J. Atmos. Sci. 2005. V. 62, N 3. P. 716–720.