Vol. 34, issue 07, article # 9

Vasiliev V. P., Znamenskii I. V., Tikhomirov A. A. Simulation of batch signal processing in laser rangefindes. // Optika Atmosfery i Okeana. 2021. V. 34. No. 07. P. 539–546. DOI: 10.15372/AOO20210709 [in Russian].
Copy the reference to clipboard

Abstract:

Processing of batch signals of a laser rangefinder intended for measuring the spacecraft orbit altitude using the pulsed method in the altitude range 180–370 km is simulated for a photodetector operating in the charge-integration mode with allowance for the background solar radiation power. In this case, the rangefinder emits a batch of five 10-ns pulses with a lag between pulses of 250 μs. Digital processing of the received echo signals is based on the method of synchronous post-detector summation of the amplitudes of all pulses in the batch. To simulate the procedure of signal processing, a 180–367.5 km pulse strobe was used. The simulation program which generates normal Gaussian noise with the mean value and the variance depending on the mean background radiation power is described together with the program interface. The probabilities of false alarm and correct signal detection are determined with allowance for the threshold number of photoelectrons for different numbers of signal photoelectrons in a single pulse of the batch. The errors of measuring the altitude range are investigated for the entire strobe.

Keywords:

laser rangefinder, batch signal, simulation, probabilities of false alarm and correct signal detection

References:

  1. Matveev I.N., Protopopov V.V., Troitskij I.N. ,Ustinov N.D. Lazernaya lokatsiya / pod red. N.D. Ustinova. M.: Mashinostroenie, 1984. 272 p.
  2. Bel'skij A.B., Zdor S.E., Kolin'ko V.I., Yatskevich N.G. Novyj podhod k razrabotkam optiko-elektronnyh sredstv monitoringa okolozemnogo kosmicheskogo prostranstva // Opt. zhurn. 2009. V. 86, N 8. P. 22–28.
  3. Degnan J.J. Unified approach to photon-counting microlaser rangers, transponders, and altimeters // Surv. Geophys. 2001. V. 22. P. 431–447. DOI: 10.1023/A:1015659931843.
  4. Vasil'ev V.P., Shargorodskij V.D. Sovremennoe sostoyanie vysokotochnoj sputnikovoj lazernoj dal'nometrii v Rossii // Fotonika. 2017. V. 66, N 6. P. 74–85. DOI: 10.22184/1993-7296.2017.66.6.74.85.
  5. URL: https://ilrs.cddis.eosdis.nasa.gov (last access: 20.03.2021).
  6. Wilkinson M., Schreiber U., Procházka I., Moore C., Degnan J., Kirchner G., Zhongping Z., Dunn P., Shargorodskiy V., Sadovnikov M., Courde C., Kunimmori H. The next generation of satellite laser ranging systems // J. Geodesy. 2018. V. 93. P. 2227–2247. DOI: 10.1007/s00190-018-1196-1.
  7. Tsyba E.N. Vychislenie parametrov vrashcheniya Zemli po rezul'tatam sputnikovoj lazernoj dal'nometrii mezhdunarodnoj seti ILRS // Tr. IPA RAN. 2016. Iss. 38. P. 66–70.
  8. Osnovy postroeniya radiolokatsionnyh stantsij radiotekhnicheskih vojsk: uchebnik / V.N. Tyapkin, A.N. Fomin, E.N. Garin [i dr.]; pod obshchej red. V.N. Tyapkina. Krasnoyarsk: Sib. feder. un-t, 2011. 536 p.
  9. Los' A.P., Rozov A.K. Sposob nekogerentnogo obnaruzheniya povtoryayushchihsya signalov // Izv. vuzov Rossii. Radioelektronika. 2016. N 3. P. 7–12.
  10. Chuhlomin I.E., Fajzulin N.A., Moskovich I.R. Obnaruzhenie korotkoj pachki pri adaptivnoj mezhduperiodnoj obrabotke // Radiopromyshlennost'. 2016. N 4. P. 124–129.
  11. Vasil'ev V.P., Glushchenko N.F., Znamenskij I.V., Sumerin V.V. Lazer s diodnoj nakachkoj v lokatorah s «pachechnym» signalom // Sistemotekhnika. 2004. N 2. URL: http://systech.miem.edu.ru/2004/n2/Vasiliev.htm (last access: 20.03.2021).
  12. Dolgij S.I., Nevzorov A.A., Nevzorov A.V., Makeev A.P., Romanovskij O.A., Harchenko O.V. Lidarnyj kompleks dlya izmereniya vertikal'nogo raspredeleniya ozona v verhnej troposfere–stratosfere // Optika atmosf. i okeana. 2018. V. 31, N 9. P. 764–770; Dolgii S.I., Nevzorov A.A., Nevzorov A.V., Makeev A.P., Romanovskii O.A., Kharchenko O.V. Lidar complex for measurement of vertical ozone distribution in the upper troposphere–stratosphere // Atmos. Ocean. Opt. 2018. V. 31, N 6. P. 702–708. DOI: 10.15372/AOO20180911.
  13. Marichev V.N., Bochkovskij D.A. Lidarnyj kompleks stantsii vysotnogo zondirovaniya atmosfery IOA SO RAN // Optika atmosf. i okeana. 2020. V. 33, N 5. P. 399–406.
  14. Nadeev A.I., Penner I.E., Shevtsov E.S. Fotopriemnyj modul' dlya registratsii lidarnyh signalov v blizhnej IK-oblasti // Optika atmosf. i okeana. 2020. V. 33, N 4. P. 309–314; Nadeev A.I., Penner I.E., Shevtsov E.S. Photodetector module for recording lidar signals in the near-infrared region // Atmos. Ocean. Opt. 2020. V. 33, N 4. P. 400–405. DOI: 10.15372/AOO20200410.
  15. Gal'yardi R.M., Karp SH. Opticheskaya svyaz' / pod red. A.G. Sheremet'eva. M.: Svyaz', 1978. 424 p.
  16. Znamenskij I.V., Tihomirov A.A. Optimizatsiya i raschet parametrov lazernogo vysotomera pri nekogerentnom prieme // Optika atmosfery. 1990. V. 3, N 5. P. 552–558.
  17. Glazov G.N. Statisticheskie voprosy lidarnogo zondirovaniya atmosfery. Novosibirsk: Nauka, 1987. 311 p.