Vol. 34, issue 06, article # 1

Mokhov I. I., Sitnov S. A., Tsidilina M. N., Voronova O. S. Relationship of pyrogenic NO2 emissions from wildfires in Russia with atmospheric blocking events. // Optika Atmosfery i Okeana. 2021. V. 34. No. 06. P. . DOI: 10.15372/AOO20210601 [in Russian].
Copy the reference to clipboard

Abstract:

Analysis of satellite and reanalysis data indicates a relationship between pyrogenic NO2 emissions and atmospheric blocking events. According to the estimates for the period 2001–2019, with an increase in the integral blocking index by 10%, the total NO2 emissions into the atmosphere during wildfires in Russia increase by 0.7 million tons. Against the background of a general decrease in 2001–2019 of pyrogenic NO2 emission, a statistically significant increase in the NO2 emission density per unit area by 23% was revealed. At the same time, a decrease in the total emission of NO2 during wildfires was noted in relation to the corresponding emissions of carbon monoxide and fine aerosol.

Keywords:

nitrogen dioxide, wildfires, pyrogenic emission, atmospheric blocking

References:

1. Karol' I.L. Monitoring radiatsionno-aktivnyh gazov atmosfery. Fizicheskie aspekty teorii klimata. L.: Gidrometeoizdat, 1990. P. 28–46.
2. Crutzen P.J. The influence of nitrogen oxides on the atmospheric ozone content // Q. J. R. Meteorol. Soc. 1970. V. 96. P. 320–325.
3. Vasilkov A.P., Joiner J., Oreopoulos L., Gleason J.F., Veefkind P., Bucsela E., Celarier E.A., Spurr R.J.D., Platnick S. Impact of tropospheric nitrogen dioxide on the regional radiation budget // Atmos. Chem. Phys. 2009. V. 9. P. 6389–6400.
4. Boningari T., Smirniotis P. Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement // Curr. Opin. Chem. Eng. 2016. V. 13. P. 133–141. DOI: 10.1016/j.coche.2016. 09.004.
5. Mebust A.K., Russell A., Hudman R.C., Valin L.C., Cohen R.C. Characterization of wildfire NOx emissions using MODIS fire radiative power and OMI tropospheric NO2 columns // Atmos. Chem. Phys. 2011. V. 11. P. 5839–5851.
6. Sitnov S.A., Mokhov I.I. Formaldehyde and nitrogen dioxide in the atmosphere during summer weather extremes and wildfires in European Russia in 2010 and Western Siberia in 2012 // Int. J. Remote Sens. 2017. V. 38, N 14. P. 4086–4106. DOI: 10.1080/01431161. 2017.1312618.
7. Vtoroj otsenochnyj doklad Roskomgidrometa ob izmeneniyah klimata i ih posledstviyah na territorii Rossijskoj Federatsii. M.: Rosgidromet. 2014. 1008 p.
8. Mohov I.I., Chernokul'skij A.V., Shkol'nik I.M. Regional'nye model'nye otsenki pozharoopasnosti pri global'nyh izmeneniyah klimata // Dokl. RAN. 2006. V. 411, N 6. P. 808–811.
9. .Mohov I.I., Chernokul'skij A.V. Regional'nye model'nye otsenki riska lesnyh pozharov v aziatskoj chasti Rossii pri izmeneniyah klimata // Geografiya i prirodnye resursy. 2010. N 2. P. 120–126.
10. Mohov I.I., Bondur V.G., Sitnov S.A., Voronova O.S. Kosmicheskij monitoring prirodnyh pozharov i emissij v atmosferu produktov goreniya na territorii Rossii : Svyaz' s atmosfernymi blokirovaniyami // Dokl. AN. 2020. V. 495. N 2. P. 61–66. DOI: 10.31857/S2686739720120087.
11. Mohov I.I., Timazhev A.V. Atmosfernye blokirovaniya i izmeneniya ih povtoryaemosti v XXI veke po raschetam s ansamblem klimaticheskih modelej // Meteorol. i gidrol. 2019. N 6. P. 5–16.
12. Seiler W., Crutzen P.J. Estimates of gross and net fluxes of carbon between the biosphere and atmosphere from biomass burning // Clim. Change. 1980. V. 2. P. 207–247.
13. Bondur V.G. Satellite monitoring of wildfires during the anomalous heat wave of 2010 in Russia // Izv., Atmos. Ocean. Phys. 2011. V. 47, N 9. P. 1039–1048. DOI: 10.1134/S0001433811090040.
14. Bondur V.G., Gordo K.A., Kladov V.L. Prostranstvenno-vremennye raspredeleniya ploshchadej prirodnyh pozharov i emissij uglerodsoderzhashchih gazov i aerozolej na territorii severnoj Evrazii po dannym kosmicheskogo monitoringa // Issledovanie Zemli iz kosmosa. 2016. N 6. P. 3–20. DOI: 10.7868/ S0205961416060105.
15. Bondur V.G., Mohov  I.I., Voronova O.S., Sitnov S.A. Kosmicheskij monitoring sibirskih pozharov i ih posledstvij: osobennosti anomalij 2019 year i tendentsii 20-letnih izmenenij // Dokl. AN. 2020. V. 492. N 1. P. 99–106. DOI: 10.31857/ S2686739720050047.
16. Bondur V.G., Voronova O.S., Cherepanova E.V., Tsidilina M.N., Zima A.L. Prostranstvenno-vremennoj analiz mnogoletnih prirodnyh pozharov i emissij vrednyh gazov i aerozolej v Rossii po kosmicheskim dannym // Issledovanie Zemli iz kosmosa. 2020. N 4. P. 1–15.
17. Friedl M.A., Sulla-Menashe D., Tan B., Schneider A., Ramankutty N., Sibley A., Huang X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets // Remote Sens. Environ. 2010. V. 114. P. 168–182.
18. Wiedinmyer C., Akagi S.K., Yokelson R.J., Emmons L.K., Al-Saadi J.A., Orlando J.J., Soja A.J. The Fire Inventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning // Geosci. Model Dev. 2011. V. 4. P. 625–641. DOI: 10.5194/gmd-4-625-2011.
19. Akagi S.K., Yokelson R.J., Wiedinmyer C., Alvarado M.J., Reid J.S., Karl T., Crounse J.D., Wennberg P.O. Emission factors for open and domestic biomass burning for use in atmospheric models // Atmos. Chem. Phys. 2011. V. 11. P. 4039–4072.
20. Tibaldi S., Molteni F. On the operational predictability of blocking // Tellus. 1990. V. 42A. P. 343–365.
21. Sitnov S.A., Mohov I.I. Sravnitel'nyj analiz harakteristik pozharov v boreal'nyh lesah Evrazii i Severnoj Ameriki po sputnikovym dannym // Issled. Zemli iz kosmosa. 2018. N 2. P. 21–37. DOI: 10.7868/S0205961418020033.