Vol. 34, issue 04, article # 5

Bazhenov O. E., Nevzorov A. V., Salnikova N. S., El'nikov A. V., Loginov V. A. Turbulent mixing of total ozone content and aerosol loading of the stratosphere. // Optika Atmosfery i Okeana. 2021. V. 34. No. 04. P. 280–284. DOI: 10.15372/AOO20210405 [in Russian].
Copy the reference to clipboard

Abstract:

We present the time series of the total ozone content and integrated aerosol backscattering coefficient in the stratosphere obtained at Siberian Lidar Station in Tomsk. Annual harmonics are distinctly manifested in the frequency spectra of energies of these time series, as well as the semiannual component in ozone time series. Representation of the frequency spectra of both stratospheric constituents on a logarithmic scale made it possible to identify in these spectra the intervals, characteristic for turbulent motion and, hence, cascade energy transfer from larger to smaller eddies and, in particular, in the energy spectrum of the total ozone content. However, the slope of the linear interval is not -1.67, as it would in obedience to the Kolmogorov–Obukhov law, but smaller (-1.22), indicating the presence of an additional energy source which contributes to the frequency variations in the total ozone content.

Keywords:

time series, stratosphere, integrated aerosol backscattering coefficient, total ozone content, Fourier transform, inertial turbulence scale

References:

1. Atmosfera. Spravochnik (spravochnye dannye, modeli). L.: Gidrometeoizdat, 1991. 509 p.
2. Zuev V.E., Titov G.A. Optika atmosfery i klimat. // Sovremennye problemy atmosfernoj optiki. Tomsk: Spektr, V. 9, 1996. 270 p.
3. Vulkany, stratosfernyj aerozol' i klimat Zemli / pod red. S.S. Hmelevtsova. L.: Gidrometeoizdat, 1986. 255 p.
4. Lenton T.M., Vaughan N.E. The radiative forcing potential of different climate geoengineering options // Atmos. Chem. Phys. 2009. V. 9. P. 5539–5561. DOI: 10.5194/acp-9-5539-2009.
5. Rasch P.J., Crutzen P.J., Coleman D.B. Exploring the geoengineering of climate using stratospheric sulphate aerosols: The role of particle size // Geophys. Res. Lett. 2008. V. 35. P. L02809. DOI: 10.1029/2007GL032179.
6. Shalamyanskij A.M. Kontseptsiya vzaimodejstviya atmosfernogo ozona i vozdushnyh mass Severnogo polushariya // Tr. Glavnoj geofizicheskoj observatorii im. A.I. Voejkova. 2013. N 568. P. 173–194.
7. Belan B.D., Ivlev G.A., Sklyadneva T.K. Issledovanie vzaimosvyazi ul'trafioletovoj radiatsii s meteorologicheskimi faktorami i zamutneniem atmosfery. Part I. Rol' obshchego soderzhaniya ozona, oblachnosti i aerozol'noj opticheskoj tolshchi // Optika atmosf. i okeana. 2020. V. 33, N 8. P. 648–655; Belan B.D., Ivlev G.A., Sklyadneva T.K. The relationship between ultraviolet radiation and meteorological factors and atmospheric turbidity: Part I. Role of total ozone content, clouds, and aerosol optical depth // Atmos. Ocean. Opt. 2020. V. 33, N 6. P. 638–644.
8. Semenov A.I., Lipatov K.V., Perminov V.I., Shefov N.N. Model' variatsij ozona mezosfery po izmereniyam izlucheniya infrakrasnoj atmosfernoj sistemy molekulyarnogo kisloroda // Dokl. AN. 2013. V. 449, N 3. P. 342–350.
9. Gushchin G.P., Vinogradova N.N. Summarnyj ozon v atmosfere. L.: Gidrometeoizdat, 1983. 288 p.
10. Perov S.P., Hrgian A.H. Sovremennye problemy stratosfernogo ozona. L.: Gidrometeoizdat, 1980. 237 p.
11. El'nikov A.V., Marichev V.N., Shelevoj K.D., Shelefontyuk D.I. Lazernyj lokator dlya issledovaniya vertikal'noj stratifikatsii aerozolya // Optika atmosf. 1988. V. 1, N 4. P. 117–123.
12. Bazhenov O.E., Elnikov A.V., Sysoev S.M. Obshchee soderzhanie ozona nad Tomskom v period 1994–2017 years: rezul'taty statisticheskogo analiza // Optika atmosf. i okeana. 2019. V. 32, N 7. P. 556–561; Bazhenov O.E., Elnikov A.V., Sysoev S.M. Total ozone content over Tomsk in 1994–2017: Results of statistical analysis // Atmos. Ocean. Opt. 2019. V. 32, N 6. P. 680–685.
13. Dolgij S.I., Nevzorov A.V., Sal'nikova N.S., El'nikov A.V., Sysoev S.M., Loginov V.A.
Metodicheskie aspekty analiza vremennyh ryadov na primere obshchego soderzhaniya aerozolya v stratosfere // Vestn. kibernetiki. 2018. № 4. С. 29–37.
14. Kolmogorov A.N. Rasseyanie energii pri lokal'no-izotropnoj turbulentnosti // Dokl. AN SSSR. 1941. V. 32, N 1. P. 19–21.
15. Obuhov A.M. O rasprostranenii energii v spektre turbulentnogo potoka // Izv. AN SSSR. Ser. geogr. i geofiz. 1941. V. 5, N 4–5. P. 453–466.
16. Sergienko A.B. Tsifrovaya obrabotka signalov. SPb.: Piter, 2003. 604 p.
17. Bendat Dzh., Pirsol A. Prikladnoj analiz sluchajnyh dannyh. M.: Kniga, 2012. 541 p.
18. Hrgian A.H. Fizika atmosfernogo ozona. L.: Gidrometeoizdat, 1973. 291 p.
19. Kashkin V.B., Rubleva T.V., Hlebopros R.G. Stratosfernyj ozon: vid s kosmicheskoj orbity: monografiya. Krasnoyarsk: Sib. feder. un-t, 2015. 184 p.
20. Monin A.S. Prognoz pogody kak zadacha fiziki. M.: Nauka, 1969. 184 p.
21. Vinnichenko N.K., Pinus N.Z., Shmeter S.M., Shur G.N. Turbulentnost' svobodnoj atmosfery. Л L.: Gidrometeoizdat, 1975. 285 p.
22. Pope S.В. Turbulent Flows. Cambridge: Cambridge University Press, 2000. 771 p.
23. Matveev L.T. Fizika atmosfery. SPb.: Gidrometeoizdat, 2000. 777 p.