Vol. 34, issue 03, article # 4

Sukharev A. A., Banakh V. A. Compensation for aberration distortions of a laser beam wavefront by aero-optical effects on aircraft – satellite paths based on backscatter signals. // Optika Atmosfery i Okeana. 2021. V. 34. No. 03. P. 185–191. DOI: 10.15372/AOO20210304 [in Russian].
Copy the reference to clipboard

Abstract:

We present the results of a numerical study of the possibility of compensating for aero-optical aberration distortions of the beam wavefront by the method of aperture sensing based on the atmospheric backscatter signal. It is shown that the method makes it possible to partially compensate for aero-optical aberrations. The dimensions of a beam in the cross section become several times smaller than of a beam without adaptive control of the wavefront, and the intensity distribution becomes more symmetric about the optical axis.

Keywords:

aero-optical effects, aberrations, atmospheric backscatter

References:

  1. Banah V.A., Suharev A.A., Falits A.V. Difraktsiya opticheskogo puchka na udarnoj volne, voznikayushchej vblizi sverhzvukovogo letatel'nogo apparata // Optika atmosf. i okeana. 2013. V. 26, N 11. P. 932–941.
  2. Banakh V.A., Sukharev A.A., Falits A.V. Optical beam distortions induced by a shock wave // Appl. Opt. 2015. V. 54, iss. 8. P. 2023–2031.
  3. Banah V.A., Suharev A.A., Falits A.V. Proyavlenie aeroopticheskih effektov v turbulentnoj atmosfere pri sverhzvukovom dvizhenii konusoobraznogo tela // Optika atmosf. i okeana. 2014. V. 27, N 8. P. 679–688; Banakh V.A., Sukharev A.A., Falits A.V. Manifestation of aero-optical effects in a turbulent atmosphere in supersonic motion of a conical body // Atmos. Ocean. Opt. 2015. V. 28, N 1. P. 24–33.
  4. Banah V.A., Suharev A.A. Iskazheniya lazernyh puchkov, vyzyvaemye udarnoj volnoj vblizi tureli sverhzvukovogo letatel'nogo apparata // Optika atmosf. i okeana. 2016. V. 29, N 1. P. 14–22; Banakh V.A., Sukharev A.A. Laser beam distortions caused by a shock wave near the turret of a supersonic aircraft // Atmos. Ocean. Opt. 2016. V. 29, N 3. P. 225–233.
  5. Banah V.A., Suharev A.A. Vklad atmosfernoj turbulentnosti v iskazheniya lazernyh puchkov, vyzyvaemye udarnoj volnoj, formiruyushchejsya pri sverhzvukovom obtekanii tureli // Optika atmosf. i okeana. 2016. V. 29, N 4. P. 257–262.
  6. Banah V.A., Suharev A.A. Vliyanie dozvukovoj skorosti dvizheniya letatel'nogo apparata na iskazheniya lazernogo puchka, rasprostranyayushchegosya s poverhnosti tureli v turbulentnoj atmosfere // Optika atmosf. i okeana. 2017. V. 30, N 7. P. 575–580.
  7. Sukharev A.A. Aeroopticheskie effekty, obuslovlennye obtekaniem ozhival'nogo tela sverhzvukovym potokom vozduha // Optika atmosf. i okeana. 2018. V. 31, N 11. P. 917–922; Sukharev A.A. Aeroptical effects caused by supersonic airflow around an ogival body // Atmos. Ocean. Opt. 2019. V. 32, N 2. P. 207–212.
  8. Banah V.A., Zhmylevskij V.V., Ignat'ev A.B., Morozov V.V., Smaliho I.N. Kollimatsiya nachal'nogo volnovogo fronta chastichno kogerentnogo svetovogo puchka po signalu obratnogo rasseyaniya // Opt. i spektroskop. 2010. V. 108, N 1. P. 113–122.
  9. Banah V.A., Zhmylevskij V.V., Ignat'ev A.B., Morozov V.V., Razenkov I.A., Rostov A.P., Tsvyk R.SH. Upravlenie nachal'nym volnovym frontom opticheskogo puchka po signalu obratnogo atmosfernogo rasseyaniya // Kvant. elektron. 2015. V. 45, N 2. P. 153–160.
  10. Born M., Vol'f E. Osnovy optiki. M.: Nauka, 1973. 720 p.
  11. Isimaru A. Rasprostranenie i rasseyanie voln v sluchajno-neodnorodnyh sredah. Pt. 1. M.: Mir, 1981. 280 p.
  12. Wilcox D.C. Turbulence Modeling for CFD. DCW Industries, Inc., La Canada, California, 2006. 522 p.
  13. Gurvich A.S., Kon A.I., Mironov V.L., Hmelevtsov S.S. Lazernoe izluchenie v turbulentnoj atmosfere. M.: Nauka, 1976. 280 p.
  14. Banah V.A., Marakasov D.A., Suharev A.A. Vosstanovlenie strukturnoj harakteristiki pokazatelya prelomleniya i srednej plotnosti vozduha v udarnoj volne, voznikayushchej pri sverhzvukovom obtekanii prepyatstvij, iz opticheskih izmerenij // Opt. i spektroskop. 2011. V. 111, N 6. P. 1032–1037.
  15. Wang K., Wang M. Aero-optics of subsonic turbulent boundary layers // J. Fluid Mech. 2012. V. 696. P. 122–151.
  16. Gao Q., Yi S.H., Jiang Z.F., He L., Zhao Y.X. Hierarchical structure of the optical path length of the supersonic turbulent boundary layer // Opt. Express. 2012. V. 20. P. 16494–16503.
  17. Gao Q., Yi S.H., Jiang Z.F., He L., Wang Xi. Structure of the refractive index distribution of the supersonic turbulent boundary layer // Opt. Laser. Eng. 2013. V. 51, iss. 9. P. 1113–1119.
  18. Vorontsov M.A., Shmal'gauzen V.I. Printsipy adaptivnoj optiki. M.: Nauka, 1985. 335 p.