Vol. 33, issue 11, article # 8

Razenkov I. A. Experimental estimation of the backscatter enhancement peak. // Optika Atmosfery i Okeana. 2020. V. 33. No. 11. P. 874–879. DOI: 10.15372/AOO20201108 [in Russian].
Copy the reference to clipboard

Abstract:

The results of an experiment in which the intensity distribution of scattered radiation at the transmitting-receiving aperture of a turbulent lidar was studied are presented. Sounding was performed along a horizontal path in moderate turbulence with a narrow laser beam located in the center of the receiving aperture, the size of which could be changed. As the size of the receiving aperture increased, the relative contribution to the echo signal due to turbulence decreased. It was found that the BSE effect localized in the center of the receiving aperture: the peak of the scattered radiation is located at the axis of the sounding beam, and its size is approximately equal to the beam size; at the periphery, the average intensity of scattered radiation slowly decreased to background values as the distance from the beam axis increased. The result can be used in practice for optimal selection of parameters of the transceiver when designing a turbulent lidar.

Keywords:

atmospheric turbulence, backscatter enhancement effect, lidar

References:

  1. Vinogradov A.G., Kravtsov Yu.A., Tatarskij V.I. Effekt usileniya obratnogo rasseyaniya na telah, pomeshchennyh v sredu so sluchajnymi neodnorodnostyami // Izv. vuzov. Radiofiz. 1973. V. 16, N 7. P. 1064–1070.
  2. Gurvich A.S. Lidarnoe zondirovanie turbulentnosti na osnove usileniya obratnogo rasseyaniya // Izv. RAN. Fizika atmosf. i okeana. 2012. V. 48, N 6. P. 655–665.
  3. Kravtsov Yu.A., Saichev A.I. Effekty dvukratnogo prohozhdeniya voln v sluchajno neodnorodnyh sredah // Uspekhi fiz. nauk. 1982. V. 137, Iss. 3. P. 501–527.
  4. Lazernyj kontrol' atmosfery / pod red. E.D. Hinkli. M.: Mir, 1979. 416 p.
  5. Razenkov I.A. Turbulentnyj lidar. I. Konstruktsiya // Optika atmosf. i okeana. 2018. V. 31, N 1. P. 41–48; Rаzenkov I.А. Turbulent lidar: I – Desing // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 273–280.
  6. Razenkov I.A. Turbulentnyj lidar.. II. Eksperiment // Optika atmosf. i okeana. 2018. V. 31, N 2. P. 81–89; Rаzenkov I.А. Turbulent lidar: II – Experiment // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 281–289.
  7. Vorob’ev V.V. O primenimosti asimptoticheskih formul vosstanovleniya parametrov «opticheskoj» turbulentnosti iz dannyh impul'snogo lidarnogo zondirovaniya. II. Rezul'taty chislennogo modelirovaniya // Optika atmosf. i okeana. 2016. V. 29, N 11. P. 987–993; Vorob’ev V.V. On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: II – Results of numerical simulation // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 162–168.
  8. Razenkov I.A. Optimizatsiya parametrov turbulentnogo lidara // Optika atmosf. i okeana. 2019. V. 32, N 1. P. 70–81; Razenkov I.A. Optimization of parameters of a turbulent lidar // Atmos. Ocean. Opt. 2019. V. 32, N 3. P. 349–360.
  9. Banah V.A., Falits A.V., Zaloznaya I.V. Usilenie srednej moshchnosti ekhosignala prostranstvenno ogranichennogo lazernogo puchka v turbulentnoj atmosfere // Optika atmosf. i okeana. 2019. V. 32, N 5. P. 371–375.
  10. Razenkov I.A., Banakh V.A., Gorgeev E.V. Lidar “BSE-4” for the atmospheric turbulence measurements // Proc. SPIE. URL: https://doi.org/10.1117/12.2505183 (last access: 28.04.2020).