Vol. 30, issue 07, article # 6

Samoilova S. V., Penner I. E., Kokhanenko G. P., Balin Yu. S. Joint retrieval of the microphysical characteristics, complex refractive index, and particle size distribution function from lidar measurements. // Optika Atmosfery i Okeana. 2017. V. 30. No. 07. P. 581–588. DOI: 10.15372/AOO20170706 [in Russian].
Copy the reference to clipboard

Abstract:

Results of the analysis of microphysical characteristics obtained from the data of nighttime Raman lidar measurements in Tomsk (56°N, 85°E) in 2013 within the CIS-LiNet project (lidar networks in CIS countries) are presented. Theoretical aspects of the retrieval of the particle size distribution function at the preset refractive index are considered. It is shown that the coarse fraction is retrieved ambiguously. Parabolic approximation of the mean size of coarse particles, Rcoarse, is suggested, which allows calculation of the size distribution function determine for particles of up to 3 mm in size. It is shown that when estimating the parameters under study together, the retrieved refractive index is non-linearly related with the optical coefficients and the distribution function, which leads to appearance of different, including false values of the refractive index. The parameters are assessed for the boundary air layer and middle troposphere.

Keywords:

aerosol, lidar, particle size distribution function, refractive index

References:

  1. Bösenberg J., Ansmann A., Baldasano J. M., Balis D., Böckmann C., Calpini B., Chaikovsky A., Flamant P., Hågård A., Mitev V., Papayannis A., Pelon J., Resen-des D., Schneider J., Spinelli N., Trickl T., Vaughan G., Visconti G., Wiegner M. EARLINET: A European aerosol research lidar network // Advances in Laser Remote Sensing / A. Dabas, C. Loth, J. Pelon, (eds.). Paris: Editions de L’Ecole Polytechnique, 2001. P. 155–158.
  2. Murayama T., Sugimoto N., Uno I., Kinoshita K., Aoki K., Hagiwara N., Liu Z., Matsui I., Sakai T., Shibata T., Arao K., Sohn B.-J., Won J.-G., Yoon S.-C., Li T., Zhou J., Hu H., Abo M., Iokibe K., Koga R., Iwasaka Y. Ground-based network observation of Asian dust events of April 1998 in East Asia // J. Geophys. Res. D. 2001. V. 106, N 16. P. 18345–18359.
  3. Chaikovsky A.P., Ivanov A.P., Balin Yu.S., Elnikov A.V., Tulinov G.F., Plusnin I.I., Bukin O.A., Chen B.B. CIS–LINET – Lidar Network for monitoring aerosol and ozone in CIS regions // Reviewed and Revised Papers Presented at the 23d ILRC / C. Nagasava, N. Sugimoto. (eds.). Nara, Japan, 2006. P. 671–672.
  4. Böckmann C., Wandinger U., Ansmann A., Bösenberg J., Amiridis V., Boselli A., Delaval A., de Tomasi F., Frioud M., Videnov Grigorov I., Hågård A., Horvat M., Iarlori M., Komguem L., Kreipl S., Larcheveque G., Matthias V., Papayannis A., Pappalardo G., Rocadenbosch F., Rodrigues J. A., Schneider J., Shcherbakov V., Wiegner M. Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms // Appl. Opt. 2004. V. 43, N 4. P. 977–989.
  5. Pappalardo G., Amodeo A., Pandolfi M., Wandinger U., Ansmann A., Bösenberg J., Matthias V., Amiridis V., de Tomasi F., Frioud M., Iarlori M., Komguem L., Papayannis A., Rocadenbosch F., Wang X. Aerosol lidar intercomparison in the framework of the EARLINET project: 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio // Appl. Opt. 2004. V. 43, N 28. P. 5370–5385.
  6. URL: www.earlinet.org (NA3 folder)
  7. Holben B.N., Eck T.F., Slutsker I., Tanré D., Buis J.P., Setzer A., Vermote E., Reagan J.A., Kaufman Y., Nakajima T., Lavenu F., Jankowiak I., Smirnov A. AERONET – A federated instrument network and data archive for aerosol characterization // Rem. Sens. Environ. 1998. V. 66. P. 1–16.
  8. Dubovik O.V., Lapyonok T.V., Oshchepkov S.L. Improved technique for data inversion: Optical sizing of multicomponent aerosols // Appl. Opt. 1995. V. 34. P. 8422–8436.
  9. Dubovik O.V., King M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements // J. Geophys. Res. D. 2000. V. 105, N 16. P. 20673–20696.
  10. Zuev V.E., Naac I.Je. Obratnye zadachi lazernogo zondirovanija. Novosibirsk: Nauka, 1982. 240 p.
  11. Müller D., Wandinger U., Ansmann A. Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: Theory // Appl. Opt. 1999. V. 38, N 12. P. 2346–2357.
  12. Böckmann C. Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distribution // Appl. Opt. 2001. V. 40, N 9. P. 1329–1342.
  13. Veselovskii I., Kolgotin A., Griaznov V., Müller D., Franke K., Whiteman D.M. Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution // Appl. Opt. 2004. V. 43, N 5. P. 1180–1195.
  14. Bohren F.C., Huffman D.R. Absorption and scattering of light by small particles. New York: John Wiley & Sons, 1983. 530 p.
  15. Böckmann C., Mironova I., Müller D., Schneidenbach L., Nessler R. Microphysical aerosol parameters from multiwavelength lidar // J. Opt. Soc. Am. A. 2005. V. 22, N 3. P. 518–528.
  16. Veselovskii I., Kolgotin A., Müller D., Whiteman D.M. Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis // Appl. Opt. 2005. V. 44, N 25. P. 5292–5303.
  17. Chemyakin E., Müller D., Burton Sh., Kolgotin A., Hostetler Ch., Ferrare R. Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data // Appl. Opt. 2014. V. 53, N 31. P. 7252–7266.
  18. Samojlova S.V. Vosstanovlenie kompleksnogo pokazatelja prelomlenija po lidarnym izmerenijam: vozmozhnosti i ogranichenija // Optika atmosf. i okeana. 2014. V. 27, N 3. P. 197–206.
  19. Samoilova S.V., Sviridenkov M.A., Penner I.E. Retrieval of the particle size distribution function from the data of lidar sensing under the assumption of known refractive index // Appl. Opt. 2016. V. 55, N 28. P. 8022–8029.
  20. Samoilova S.V., Balin Yu.S. Reconstruction of the aerosol optical parameters from the data of sensing with a multifrequency Raman lidar // Appl. Opt. 2008. V. 47, N 36. P. 6816–6831.
  21. Tihonov A.N., Arsenin V.Ja. Metody reshenija nekorrektnyh zadach. M.: Nauka, 1986. 285 p.
  22. Vasilenko G.I. Teorija vosstanovlenija signalov. M.:  Sov. radio, 1979. 272 p.
  23. Samojlova S.V., Penner I.Je., Kohanenko G.P., Balin Ju.S. Ajerozol'nye sloi troposfery: odnorodnost' v vysotnom raspredelenii opticheskih i mikrofizicheskih harakteristik // Optika atmosf. i okeana. 2016. V. 29, N 12. P. 1043–1049.
  24. Аршинов М.Ю., Белан Б.Д., Давыдов Д.К., Ивлев Г.А., Козлов А.В., Козлов А.С., Малышкин С.Б., Симоненков Д.В., Антохин П.Н. Нуклеационные всплески в атмосфере бореальной зоны Западной Сибири. Part I. Классификация и повторяемость // Оптика атмосф. и океана. 2014. V. 27, N 9. P. 766–774.
  25. Obvincev Ju.I., Iordanskij M.A., Emilenko A.S., Sviridenkov M.A. Issledovanie opticheskih i mikrofizicheskih harakteristik submikronnogo ajerozolja v uslovijah megapolisa (na primere goroda Pekina) // Sb. trudov «Vos'myh Petrjanovskih chtenij». Moskva, 28–30 june 2011 year. M.: MGIU, 2011. P. 172–183.