Vol. 29, issue 08, article # 9

Kokhanenko G. P., Balin Yu. S., Klemasheva M. G., Penner I. E., Samoilova S. V., Terpugova S. A., Banakh V. A., Smalikho I. N., Falits A. V., Rasskazchikova T. M., Аntokhin P. N., Arshinov M. Yu., Belan B. D., Belan S. B. Structure of aerosol fields of the atmospheric boundary layer according to aerosol and Doppler lidars during the passage of atmospheric fronts. // Optika Atmosfery i Okeana. 2016. V. 29. No. 08. P. 679–688. DOI: 10.15372/AOO20160809 [in Russian].
Copy the reference to clipboard

Abstract:

The paper presents the results of complex observations of the atmosphere boundary layer dynamics carried out at the site of IAO SB RAS in September 2013 with the use of remote sensing, aerosol and Doppler lidars. The structure of aerosol and wind fields in the period of internal waves buoyancy and the low-level jet streams in the boundary layer are examined.

Keywords:

lidar, boundary layer, internal gravity waves

References:

  1. Stull R.B. An introduction to boundary layer meteorology. Kluwer Academic Publisher, 1988. 657 p.
  2. Braun R.A. Analiticheskie metody modelirovanija planetarnogo pogranichnogo sloja. L.: Gidrometeoizdat, 1978. 144 p.
  3. Oke T.R. Boundary layer climates. Taylor & Francis e-Library, 2002. 460 p.
  4. Matveev L.T. Kurs obshhej meteorologii. Fizika atmosf. L.: Gidrometeoizdat, 1984. 752 p.
  5. Martucci G., Matthey R., Mitev V., Richner H. Frequency of boundary-bayer-top fluctuations in convective and stable conditions using laser remote sensing // Bound.-Lay. Meteorol. 2010. V. 135, N 2. P. 313–331.
  6. Crum T.D., Stull R.B., Eloranta E.W. Coincident Lidar and aircraft observations of entrainment into thermals and mixed layers // J. Climate Appl. Meteorol. 1987. V. 26, N 7. P. 774–788.
  7. Eloranta E.W., Forrest D.K. Volume-imaging lidar observations of the convective structure surrounding the flight path of a flux-measuring aircraft // J. Geophys. Res. D. 1992. V. 97, N 17. P. 18383–18393.
  8. Melfi S.H., Spinhirne J.D., Chou S-H., Palm S.P. Lidar observation of vertically organized convection in the planetary boundary layer over the ocean // J. Climate Appl. Meteorol. 1985. V. 24, N 8. P. 806–821.
  9. Lothon M., Lenschow D.H., Mayor S.D. Coherence and scale of vertical velocity in the convective boundary layer from a Doppler lidar // Bound.-Lay. Meteorol. 2006. V. 121, N 3. P. 521–536.
  10. Kunkel K.E., Eloranta E.W., Shipley S.T. Lidar observations of the convective boundary layer // J. Appl. Meteorol. 1977. V. 16, N 12. P. 1306–1311.
  11. Atlas D., Walter B., Chou S.H., Sheu P.J. The structure of the unstable marine boundary layer viewed by lidar and aircraft observations // J. Atmos. Sci. 1986. V. 43, N 13. P. 1301–1318.
  12. Gossard E.E., Hooke W. Waves in the atmosphere. N.Y.: Elsevier, 1975. 532 p.
  13. Viana S., Yagüe C., Maqueda G. Propagation and effects of a mesoscale gravity wave over a weakly-stratified nocturnal boundary layer during the SABLES2006 field campaign // Bound.-Lay. Meteorol. 2009. V. 133, N 2. P. 165–188.
  14. Petenko I., Mastrantonio G., Viola A., Argentini S., Pietroni I. Wavy vertical motions in the ABL observed by sodar // Bound.-Lay. Meteorol. 2012. V. 143, N 1. P. 125–141.
  15. Odincov S.L. Osobennosti dvizhenij nizhnego sloja atmosfery pri prohozhdenii vnutrennih gravitacionnyh voln // Optika atmosf. i okeana. 2002. V. 15, N 12. P. 1131–1136.
  16. Lyulyukin V.S., Kuznetsov R.D., Kallistratova M.A. The composite shape and structure of braid patterns in Kelvin–Helmholtz billows observed with a sodar // J. Atmos. Ocean. Technol. 2013. V. 30, N 12. P. 2704–2711.
  17. Boers R., Eloranta E.W. Lidar measurements of the atmospheric entrainment zone and the potential temperature jump across the top of the mixed layer // Bound.-Lay. Meteorol. 1986. V. 34, N 4. P. 357–375.
  18. Pahlow M., Kleissl J., Parlange M.B., Ondov J.M., Harrison D. Atmospheric boundary-layer structure observed during a haze event due to forest-fire smoke // Bound.-Lay. Meteorol. 2005. V. 114, N 1. P. 53–70.
  19. Träumner K., Kottmeier Ch., Corsmeier U., Wieser A. Convective boundary-layer entrainment: Short review and progress using Doppler Lidar // Bound.-Lay. Meteorol. 2011. V. 141, N 3. P. 369–391.
  20. Lesouëf D., Gheusi F., Chazette P., Delmas R., Sanak J. Low tropospheric layers over reunion island in lidar-derived observations and a high-resolution model // Bound.-Lay. Meteorol. 2013. V. 149, N 3. P. 425–453.
  21. Gibert F., Cuesta J., Yano J.-I., Arnault N., Flamant P.H. On the correlation between convective plume updrafts and downdrafts, lidar reflectivity and depolarization ratio // Bound.-Lay. Meteorol. 2007. V. 125, N 3. P. 553–573.
  22. Banah V.A., Smaliho I.N., Falic A.V., Belan B.D., Arshinov M.Ju., Antohin P.N. Sovmestnye radiozondovye i doplerovskie lidarnye izmerenija vetra v pogranichnom sloe atmosfery // Optika atmosf. i okeana. 2014. V. 27, N 10. P. 911–916.
  23. Matvienko G.G., Belan B.D., Panchenko M.V., Romanovskii O.A., Sakerin S.M., Kabanov D.M., Turchinovich S.A., Turchinovich Y.S., Eremina T.A., Kozlov V.S., Terpugova S.A., Pol'kin V.V., Yausheva E.P., Chernov D.G., Zhuravleva T.B., Bedareva T.V., Odintsov S.L., Burlakov V.D., Nevzorov A.V., Arshinov M.Y., Ivlev G.A., Savkin D.E., Fofonov A.V., Gladkikh V.A., Kamardin A.P., Balin Y.S., Kokhanenko G.P., Penner I.E., Samoilova S.V., Antokhin P.N., Arshinova V.G., Davydov D.K., Kozlov A.V., Pestunov D.A., Rasskazchikova T.M., Simonenkov D.V., Sklyadneva T.K., Tolmachev G.N., Belan S.B., Shmargunov V.P., Kozlov A.S., Malyshkin S.B. Complex experiment on studying the microphysical, chemical, and optical properties of aerosol particles and estimating the contribution of atmospheric aerosol-to-earth radiation budget // Atmos. Measur. Tech. 2015. V. 8, N 10. P. 4507–4520.
  24. Penner I.Je., Balin Ju.S., Makarova M.V., Arshinov M.Ju., Voronin B.A., Belan B.D., Vasil'chenko S.S., Serdjukov V.I., Sinica L.N., Polovceva E.R., Kabanov D.M., Kohanenko G.P. Izmerenija soderzhanija vodjanogo para razlichnymi metodami. Sravnenija profilej vodjanogo para i ajerozolja // Optika atmosf. i okeana. 2014. V. 27, N 8. P. 728–738.
  25. Samojlova S.V., Balin Ju.S., Kohanenko G.P., Penner I.Je. Issledovanie vertikal'nogo raspredelenija troposfernyh ajerozol'nyh sloev po dannym mnogochastotnogo lazernogo zondirovanija. Part 1. Metody vosstanovlenija opticheskih parametrov // Optika atmosf. i okeana. 2009. V. 22, N 4. P. 344–357; Samoilova S.V., Balin Yu.S., Kokhanenko G.P., Penner I.E. Investigations of the vertical distribution of troposphere aerosol layers based on the data of multifrequency Raman lidar sensing. Part 1. Methods of optical parameters retrieval // Atmos. Ocean. Opt. 2009. V. 22, N 3. P. 302–315.
  26. Balin Yu.S., Bairashin G.S., Kokhanenko G.P., Klemasheva M.G., Penner I.E., Samoilova S.V. LOSA-M2 aerosol Raman lidar // Quantum Electron. 2011. V. 41, N 10. P. 945–949.
  27. Tao Z., McCormick M.P., Wu D., Liu Z., Vaughan M.A. Measurements of cirrus cloud backscatter colour ratio with a two-wavelength lidar // Appl. Opt. 2008. V. 47, N 10. P. 1478–1485.
  28. Pearson G., Davies F., Collier C. An analysis of performance of the UFAM pulsed Doppler lidar for the observing the boundary layer // J. Atmos. Ocean. Technol. 2009. V. 26, N 2. P. 240–250.
  29. Smalikho I.N. Techniques of wind vector estimation from data measured with a scanning coherent Doppler lidar // J. Atmos. Ocean. Technol. 2003. V. 20, N 2. P. 276–291.
  30. Banah V.A., Brjuer A., Pichugina E.L., Smaliho I.N. Izmerenija skorosti i napravlenija vetra kogerentnym doplerovskim lidarom v uslovijah slabogo jeho-signala // Optika atmosf. i okeana. 2010. V. 23, N 5. P. 333–340; Bаnakh V.А., Brewer А., Pichugina Е.L., Smаlikhо I.N. Measurements of wind velocity and direction with coherent Doppler lidar in conditions of a weak echo signal // Atmos. Ocean. Opt. 2010. V. 23, N 5. P. 381–388.
  31. Vaisala radiosondes RS92. URL: http://www.vaisala.com/ en/products/soundingsystemsandradiosondes/radiosondes/  Pages/RS92.aspx
  32. Gladkih V.A., Makienko A.Je. Cifrovaja ul'trazvukovaja meteostancija // Pribory. 2009. N 7(109). P. 21–25.
  33. Stein A.F., Draxler R.R., Rolph G.D., Stunder B.J.B., Cohen M.D., Ngan F. NOAA's HYSPLIT atmospheric transport and dispersion modeling system // Bull. Amer. Meteorol. Soc. 2015. V. 96, N 12. P. 2059–2077.
  34. Rolph G.D. Real-time Environmental Applications and Display sYstem (READY). NOAA Air Resources Laboratory, College Park, MD. 2016. URL: http://www. ready.noaa.gov
  35. Gladkih V.A., Makienko A.Je., Fedorov V.A. Akusticheskij doplerovskij lokator «Volna-3» // Optika atmosf. i okeana. 1999. V. 12, N 5. P. 422–429.
  36. Kamardin A.P., Kohanenko G.P., Nevzorova I.V., Penner I.Je. Sovmestnye issledovanija struktury pogranichnogo sloja atmosfery na osnove lidarnyh i sodarnyh izmerenij // Optika atmosf. i okeana. 2011. V. 24, N 6. P. 534–537.
  37. Kamardin A.P., Odincov S.L., Skorohodov A.V. Identifikacija vnutrennih gravitacionnyh voln v atmosfernom pogranichnom sloe po dannym sodara // Optika atmosf. i okeana. 2014. V. 27, N 9. P. 812–818.
  38. Kokhanenko G.P., Terpugova S.A. Relationship of spatial structure of aerosol and humidity during passage of the internal gravity wave // Proc. SPIE 9292, 20th In. Symp. on Atmospheric and Ocean Optics: Atmospheric Physics, 92923S. 2014. DOI: 10.1117/12.2075503.
  39. Odincov S.Ja. Issledovanija atmosfernogo pogranichnogo sloja metodami lokal'noj i distancionnoj akusticheskoj diagnostiki v IOA SO RAN // Optika atmosf. i okeana. 2009. V. 22, N 10. P. 981–987.
  40. Kasten F. Visibility forecast in the phase of precondensation // Tellus. 1969. V. 21, N 5. P. 631–635.
  41. Hanel G. The properties of atmospheric aerosol particles as function of relative humidity at the thermodynamic equilibrium with surrounding moist air // Adv. Geophys. 1976. V. 19. P. 73–188.
  42. Orr Jr., Hurd C.F.K., Corbett W.J. Aerosol size and relative humidity // J. Colloid Sci. 1958. V. 13, N 5. P. 472–482.
  43. Tang I.N. Phase transformation and growth of aerosol particles composed of mixed salts // J. Aerosol Sci. 1976. V. 7, N 5. P. 361–371.
  44. Martin S.T. Phase transitions of aqueous atmospheric particles // Chem. Rev. 2000. V. 100, N 9. P. 3403–3453.
  45. Fitzerald J.W. Approximation formulas for the equilibrium size of an aerosol particle as a function of its dry size and composition and the ambiant relative humidity // J. Appl. Meteorol. 1975. V. 14, N 6. P. 1044–1049.
  46. Panchenko M.V., Terpugova S.A., Kozlov V.S., Pol'kin V.V., Jausheva E.P. Godovoj hod kondensacionnoj aktivnosti submikronnogo ajerozolja v prizemnom sloe atmosfery Zapadnoj Sibiri // Optika atmosf. i okeana. 2005. V. 18, N 8. P. 678–683.
  47. Terpugova S.A., Panchenko M.V., Sviridenkov M.A., Yausheva E.P. Different types of dependence of aerosol properties upon relative humidity // J. Aerosol Sci. 2004. Suppl. 35. V. 1. P. 1043–1044.
  48. Terpugova S.A., Dokukina T.A., Jausheva E.P., Panchenko M.V. Sezonnye osobennosti projavlenija razlichnyh tipov gigrogramm kojefficienta rassejanija // Optika atmosf. i okeana. 2012. V. 25, N 11. P. 952–957.
  49. Kovalev V.A., Eichinger W.E. Elastic Lidar. Hoboken, New Jersey: John Willey & Sons, Inc., 2004. 615 p.
  50. Ackermann J. The extinction-to-backscatter ratio of tropospheric aerosol: A numerical study // J. Atmos. Ocean. Technol. 1998. V. 15, N 4. P. 1043–1050.
  51. Balin Ju.S., Krekov G.M., Samohvalov I.V., Rahimov R.F. Vlijanie vlazhnosti na lokacionnoe rassejanie v atmosfere // Meteorol. i gidrol. 1978. N 8. P. 114–119.
  52. de Leeuw G., Kunz G.J., Lamberts C.W. Humidity effects on the backscatter/extinction ratio // Appl. Opt. 1986. V. 25, N 22. P. 3971–3974.
  53. Anderson T.L., Masonis S.J., Covert D.S., Charlson R.J., Rood M.J. In situ measurement of the aerosol extinction to backscatter ratio at a polluted continental site // J. Geophys. Res. 2000. V. 105, N 22. P. 26907–26915.
  54. Feingold G., Morley B. Aerosol hygroscopic properties as measured by lidar and comparison with in situ measurements // J. Geophys. Res. D. 2003. V. 108, N 11. 4327.
  55. Salemink H.W.M., Bergwerff J.B., Schotanus P. Quantitative lidar at 532 nm for vertical extinction profiles and the effect of relative humidity // Appl. Phys. B. 1984. V. 34, N 4. P. 187–189.
  56. Wulfmeyer V., Feingold G. On the relationship between relative humidity and particle backscattering coefficient in the marine boundary layer determined with differential absorption lidar // J. Geophys. Res. D. 2000. V. 105, N 4. P. 4729–4741.
  57. Dupont E., Pelon J., Flamant C. Study of the moist convective boundary layer structure by backscattering lidar // Bound.-Lay. Meteorol. 1994. V. 69, N 1. P. 1–25.
  58. World Meteorological Organization. Guide to meteorological instruments and methods of observation. N 8. 2008. URL: http://www.wmo.int/pages/prog/www/ IMOP/CIMO-Guide.html
  59. Lidary LOZA. URL: http://loza.iao.ru