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Pulsed radiation undergoes distortions due to the multiple scattering effects while propagated 

through a layer of a scattering medium. This paper presents the results on the time shape of a pulse 
calculated numerically for the cases of media with different scattering phase functions. It is shown 
that even at rather large optical thickness (τ ≈ 10–20), time shape of scattered radiation pulse cannot 
be described using diffusion theories, being, as a rule, a bimodal distribution. Only at a significant 
increase in optical thickness (τ > 100–150), the photon distribution over photon free paths takes a 
unimodal “diffusion” shape. 

 

Introduction 

Pulse light sources are widely used in optical 
communication and navigation, as well as in 
detection and ranging. Propagation of a light pulse 
through the scattering medium (such as atmosphere 
or water) is accompanied by multiple light scattering 
that causes pulse delay and thus increases its 
duration.  

If optical thickness τ of the scattering layer is 
small (τ << 1), a signal is determined by the direct and 
single-scattered radiation. In this case, the time pulse-
width broadening is determined by the geometrical 
parameters of the experiment, namely, range, field-
of-view angle, etc. Increase in τ causes the dominance 
of multiple scattering and dependence of a signal 
shape on optical parameters of the scattering medium 
such as optical thickness and asymmetry of the 
scattering phase function.  

The most complicated shape of a signal is 
observed in the case of optical receivers with a wide 
field of view (illuminometers), since in this case, 
even at τ << 1, the photons scattered at large angles 
make up a significant fraction of the total signal 
energy. These photons are delayed in time much 
stronger than the photons scattered at small angles. 
Consequently, radiation time structure (photon 
distribution over free paths) acquires a complex 
multimodal structure in the transient range of optical 
thickness (from τ << 1 up to τ >> 1).  

Analysis of the well-known experimental 
observations and numerical calculations conducted by 
the author show that time shape of an optical signal 
could not be uniquely determined under these 
conditions by the maximum delay or by the duration 
at half-maximum level. In this paper I present results 
on the photon distribution over free paths calculated 
for media with different asymmetry of the scattering 
phase function. One can observe the distribution 
transformation from multimodal to the “diffusion” 

type at unlimited increase of the optical thickness of 
the scattering medium. 

1. Pulse deformation  
in scattering media  

Let us assume that there is a short light pulse 
I0δ(r)δ(t) in the scattering medium (may be, at its 
boundary). Direct attenuated radiation will reach the 
receiver placed in the medium at the point r 
(⏐r⏐ = Z) at a time  moment T0 = Z/c, where c is 
the speed of light in the medium. Direct radiation 
intensity is attenuated exponentially  

 0 0( , ) exp( ) ( )I t I t T= −τ δ −r  

while keeping the initial feature δ(t). (Here τ = εZ is 
the optical thickness of the path, ε is the attenuation 
coefficient). The radiation of different scattering 
orders will produce a pulse in the detector whose 
maximum is delayed by tmax  relative to the arrival 
time of the first photon and has the duration δt (the 
half-maximum level). At large values of τ the fraction 
of the attenuated direct flux is negligible and the 
recorded signal is determined mainly by the scattered 
radiation.  

For the illuminometer (receiver with a unity 
aperture and cosine-type directional pattern), the 
recorded signal power P(t) is related to the intensity 
I(t) by the following expression 

 
2

( ) ( )cos d ,P t I t

π

= ϕ ω∫  

where ϕ is the angle of incidence, dω is the element 
of solid angle. Time shape of a signal P(t) can be 
interpreted as a distribution of photons over free 
paths P(l = ct).  

It is usually assumed that this distribution is 
rather simple, like Γ-distribution, with a steep front 
and slow droop and constant ratio between tmax and 
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δt. In this case the task is to estimate the time 
parameters (tmax, δt) of the pulse depending on 
optical parameters of the medium (such as optical 
thickness, τ, average cosine of the scattering angle, 
<cosγ>, etc.). 

In the general case, radiation intensity is 
determined by solution of the time-dependent 
radiation transfer equation (RTE)1–4: 

 
4

1
( , , ) ( , ) ( , , )d .

r
I t g I t

c t
π

∂⎛ ⎞ ′ ′+ ∇ + ε = Λ ω⎜ ⎟
∂⎝ ⎠ ∫s r s s s r s  (1) 

Here ( , , )I tr s  is the radiation intensity at the point r 

along direction of s, Λ = σ/ε is the single scattering 
albedo, σ is the scattering coefficient. The scattering 
phase function g(γ) is normalized by the condition 

4

( )d 1,g

π

γ ω =∫  γ is the scattering angle. As a rule, one 

can obtain solutions of the time-dependent RTE from 
the corresponding approximation of a steady-state 
equation by applying the Laplace transform in time.5 
Unfortunately, analytical solutions are known only 
for a limited range of variation of the medium optical 
parameters (single scattering albedo, scattering phase 
function asymmetry), that leads to the additional 
restrictions on time interval where an unsteady 
solution is valid.  

Asymptotic solutions of the time-dependent 
equation6 are known that describe the light pulse 
shape at t → ∞ for different geometry of the 
scattering medium. For example, for a point source in 
an infinite scattering medium considered in this 
paper, radiation intensity falls down according to the 
law t–3/2 (Ref. 2). Media with noticeable true 
absorption and strongly forward peaked scattering 
phase function (for example, seawaters) well conform 
to the applicability conditions of the small-angle 
approximation,7–9 allowing only for the scattering at 
small angles. The situation is more difficult with the 
scattering media having low true absorption (κ is 
much lower than σ), since the photons scattered at 
large angles make a significant contribution to the 
scattered radiation intensity at t → ∞. Since such 
media are the subject of this study, we shall consider 
them in a more detail. 

The brightness field in conservative media quite 
rapidly becomes close to isotropic as photons 
penetrate into the medium depth. Therefore, one can 
present the radiation propagation at large distances 
from the medium boundaries as a process of energy 
diffusion described by the diffusion equation1,10,12: 

 21 d
.

d

U
D U U

c t
= ∇ − κ  (2) 

Here 
4

( , ) ( , , )dU t I t

π

= ω∫r r s  is the average radiation 

intensity (spatial illumination), D is the diffusion 
coefficient. 

Various approaches lead to the diffusion 
equation. Rather simple representations of scattering 

as a process of photon random walk through a grid of 
scattering centers, have allowed Chandrasekhar10 to 
obtain the expression for the photon distribution over 
free paths for the case of isotropic scattering. 
Chandrasekhar has pointed out that in the asymptotic 
case of a great number of collisions (Z/l >> 1, 
l = 1/σ is the free path), the distribution is 
described by the diffusion equation with D = 1/3σ. 
For nonisotropic scattering, the diffusion equation 
conforms to the first approximation of the spherical 
harmonics method, moreover, the results of the 
isotropic scattering approach are applicable, if 
l = 1/σ is replaced by the transport length 
lD = 1/σ(1 – <cosγ> ).11,12 This typical 
dimensionless parameter calls for diffusion 
(transport) optical path length τD = σZ(1 – <cosγ>). 
Quite detailed solutions of the RTE for unsteady 
state radiation were obtained in diffusion 
approximation (DA) in 70s by Zege13 and Ivanov,14 
and by Ishimaru, Ito, Furutsu, and Chevro,15–19 in 80s 
and 90s of the 20th century. The process of photon 
random walk was considered in Ref. 20.  

Another diffusion state of light field is observed 
at τ = σZ, in the case of strongly forward peaked 
scattering phase function, when angular variance of 
the radiation beam <θ2> is, as in DA, much larger 
than the single scattering variance <γ2> owing not to 
the large optical thickness, but to the smallness of 
<γ2>: 1 << <γ2> << <θ2> (small-angle diffusion 
approximation, SDA). Solutions in SDA for wide and 
narrow beams have been obtained by Dolin,21 
Remizovich,22 and Rogozkin.23 The SDA gives 
satisfactory results on radiation time shape allowing 
for the dependence of D on the time of photon 
residence in the medium.23–25  

For the diffusion radiation (normal spatial 
distribution and angular  one close to isotropic), the 
photon distribution over free paths has quite a simple 
shape with a steep front and a power-law falloff. It is 
just for this case, that it is possible to construct a 
unique representation for time (and angular and 
spatial) distribution of the brightness field in terms 
of its known moments (first and second).26 Similar 
approach was realized, in particular, by McLean27 
who regenerated the pulse shapes up to τ = 24, 
applying the SDA formulas23 and the moments 
calculated by Lutomirskii.28 In the general case, 
knowledge of the field moments gives no unique 
representation of exact shape of the photon 
distribution over free paths. 

The idea that pulse spreading is caused by 
radiation diffusion in the scattering medium is clear 
from the physical point of view and allows one to use 
DAs at large optical thickness (τD >> 1). At smaller τ 
the radiation time structure can be quite different. In 
comparing our numerical results with those predicted 
by DAs, we shall use the formula for a signal power 
proposed by Ito and Furutsu16,18: 
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Here η = 3(1 – <cosγ>). The formula was obtained 
for the scattering layer illuminated by a broad 
radiation beam and has the same asymptotic behavior 
of a signal (t–3/2) as in the case with a point source. 
For the case of a narrow directed beam of radiation 
when the transverse radiation diffusion is essential, 
the pulse droop will be more rapid.18,50 From Eq. (3) 
one obtains for δt and tmax the following estimates 
 

 2/2;u c tδ ≡ σ δ ≈ ητ  tmax ≈ δt/3. (4) 

Proportionality of the delay time to the squared 
optical thickness is typical for the process of photon 
walks random in the scattering medium.10,14,49 If the 
scattering layer was limited in space, the influence of 
boundary conditions would lead to the small deviation 
from the quadratic dependence at small τ.14,19 

2. Analysis of experimental 
observations of the light pulses 

In order to elucidate the applicability of the 
approximate solutions of the RTE under different 
conditions, it is necessary to compare the analytically 
calculated results with the results of field or 
numerical experiments. Obvious advantages of the 
numerical modeling are that the medium optical 
parameters and geometry of the experiment can be set 
precisely. However, there are only few calculations of 
the pulse time broadening and this is because, first, of 
certain difficulties in getting a representative 
statistical data on media with high scattering 
anisotropy using fine time grid. Let us mention only 
some studies.25,29–35 Certain simplifications of the 
experimental arrangement have been used in many 
studies, for example, a limited time resolution33 or 
the account of the forward scattering31 only. It 
should be noted that limited potentialities of 
computers in 1970–1980 years did not allow 
obtaining the calculation statistics sufficient for 
solving time-dependent problems.  

Such situation explains the attention of the 
researchers to the experimental studies. In 1970s and 
1980s, a number of observations was performed of 
time broadening of light pulses propagated through 
scattering media both in field and under model 
conditions.36–47 Some information about these 
observations is presented in the Table. 

 

Experimental observations of light pulses  
in scattering media 

R
e
fs

. 

Range 
Time 

resolution of 
the recorder  

Field of 
view angle 

2ϕ, deg 

Optical 
thickness 

Maximum
broadening

41 11 cm 25 ps 16–36 13–77 690 ps 
43 4 m 1 ns 60 20–50 6 ns 
47 20 m 0.5 ns 2 10–80 42 ns 
45 100 m 2 ns 10 25 60 ns 
40 0.96 km 20 ns 2–15 18–30 175 ns 
42 1.2 km 10 ns 0.5 8–20 22 ns 
37 2 km 30 ns 5–20 4–25 0.6 µs 
36 7.2 km 50 ns 4 34–249 15 µs 
39 12 km 200 ns 4–34 30–50 20 µs 
38 13.6 km 150 ns 0.01–1 4–12 0.5 µs 

The experiments essentially differed by the path 
length and time resolution of the receiving equipment. 
There were long paths about 7 to 13 km (Mooradian,39 
Bucher and Lerner,36 Paik38) and model chambers 
with the paths of 11 cm (Elliott41) to 20 m (Vergun47) 
length. As a rule, water fogs and clouds were 
observed in the experiment. The exceptions are a 
series of studies by Gol’din and Pelevin44,45 in natural 
ocean waters and experiments in the Elliott model 
chamber,41 where paraffin suspension in the water 
was one of the media. In most cases, when a 
considerable pulse broadening was observed the signals 
had shapes close to that caused by diffusion, i.å., these 
had a steep front edge and quite a slow falloff. 
Mooradian39 had distinguished two Γ-distributions in 
a signal, differing by duration approximately triply, 
and had attributed the narrower one to the low-orders 
of scattering. Leelavathi48 explained it by the 
simultaneous three-dimensional and one-dimensional 
diffusions and discovered the same pattern in data 
obtained by Elliott.41 In some experiments, we have 
observed the dependence of a signal shape on the 
field-of-view (FOV) angle of the receiver, however 
the pulse duration varied by 3 to 5 times while 
changing the FOV angle from 2 to 35° (Refs. 39–
41, 47). Weak dependence of pulse duration on FOV 
was shown by Chievro19 using a diffusion approach. 
 The measured pulse durations considerably 
differed in the above-mentioned studies, however, the 
matter was not only  in different path lengths. 
Bucher and Lerner36 observed the broadening up to 
32 µs at a range of 7.2 km at FOV equal 4°, whereas 
Paik,38 with his path of 13.6 km length and 1° FOV 
did not observe any considerable broadening at the 
same 150-ns time resolution of the recorder. It is 
important for our analysis that in some experiments, 
(Elliott41

 at τD < 3.1, Mooradian40 at τ = 20, Matter42 
in measurements on the beam axis) peaks were 
observed in the beginning of pulses along with the 
diffusion radiation and that the peaks’ duration did 
not exceed time resolution of the recorders. Energy of 
these peaks considerably exceeded direct beam energy 

(exponentially attenuated), therefore, these pulses 
were, quite naturally, interpreted to be caused by the 
fraction of radiation multiply scattered along the 
forward direction at angles within the limits of the 
receiver’s FOV. The similar peaks were also 
calculated in numerical simulations.30 

Great variety of conditions (geometrical and 
optical) realized in the experiment, does not allow 
one to compare correctly all measured angular, 
spatial, and energy distributions. However, one can 
analyze the time broadening of the pulses based on 
predictions by diffusion theories, since the time 
broadening at rather large optical thicknesses is not 
sensitive to the medium stratification, and the 
scattering properties are preset by the single 
parameter, i.e., by the mean cosine of scattering 
angles. 

Experimental data on measured pulse time 
broadening obtained in the above-discussed studies 
are shown in Fig. 1.  
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Naturally, only durations of the “diffusion” 
component of a signal are presented, since the finite 
time resolution of the recorder didn’t allow accurate 
time shape of the multiply scattered forward 
radiation (if it was recorded) to be measured. The 
horizontal axis in Fig. 1 shows optical thickness of 
the scattering layer, the vertical axis presents the 
value η′ = δu/τ2, which, according to Eq. (4), should 
depend only on the asymmetry of the medium 
scattering phase function. The dashed curves 13 and 
14 show the dependences of the pulse duration for 
broad and narrow beams obtained using DA18 with 
regard for the boundary conditions. In some data, the 
variation limits of duration are marked (vertical 
arrows), which were observed at FOV change. The 
measurement errors in the duration and optical 
thickness are presented if those were given in the 
above-quoted papers. It should be noted that no 
optical thickness value was not given in two 
papers37,39 and I estimated it based on the indirect 
information.  

Experimental data on the duration obtained in 
the scattering media different than the water fog 
were recalculated by Eq. (4) in correspondence with 
the value of <cosγ> taken from Refs. 41 and 45. 
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Fig. 1. Experimentally observed time broadening of light 
pulse. Digits correspond to the references: (1) Ref. 36; (2, 3) 
Ref. 41 for different scattering media; (4) Ref. 43;  
(5) Ref. 45; (6, 7) Ref. 47 for two polarization components; 
(8) Ref. 39; (9) Ref. 37; (10) Ref. 40; (11) Ref. 38; (12) Ref. 42. 

 

First it is seen that some data36,41 well agree 
with the dependence predicted by DA. At the same 
time, some data have a completely different, stronger 
than quadratic dependence of the duration on the 
optical thickness (for example, the author’s data47 
shown by the dashed-dotted curve 15). In the range of 
transient optical thickness  τ = 10–30 (already τ >> 1, 
but τD = τ(1 – <cosγ>) is not large yet), the spread 
measurement data obtained by different authors 
makes three orders of magnitude. No diffusion 

theories can explain such a spread by the effect of 
experimental conditions (FOV angles, cross size of 
the scattering layer, etc.). Obviously, the definition 
of the pulse duration as the width at half-maximum 
used in the experiment does not work correctly. This 
occurs because it is impossible to present the 
“diffusion” component of the radiation using a 
unimodal Γ-distribution. 

Based on the data of model experiments and 
numerically calculated results, we have assumed (see 
Refs. 24 and 35) that, actually, pulse shape 
(distribution of photons over free paths) in the region 
of transient optical thickness is as bimodal (or higher 
modality) distribution of the type presented below 
(see Section 4). The first group of photons (photons 
of attenuated direct beam and photons multiply 
scattered forward) conserves the initial δ(t) feature. 
The photons scattered at small-angles have though 
insignificant, but finite, duration and their 
distribution takes nearly asymptotic falloff rate. 
However, the “tail” of this distribution does not 
approach the real asymptotic.  

Diffuse background formed by photons multiply 
scattered at large-angles having thus “forgotten” 
directions of the initial motion forms its own 
distribution different from the adjacent one both in 
time and power. A fraction of energy of each of these 
photon groups depends, first, on such parameters as 
optical thickness of the medium and asymmetry of 
the scattering phase function. Not a real experiments 
could provide has such a wide dynamic range (both in 
time and power), that would enable one to record 
simultaneously the adjacent maxima of the radiation. 
The result strongly depends on time resolution of the 
recorder. In the case of low resolution (compared to 
the path length) the real diffuse maximum is 
recorded and everything scattered at small-angles is 
interpreted as a peak of formed by radiation multiply 
scattered forward. Sufficiently high time resolution 
allows accurate recording of the time behavior of 
radiation scattered at small-angles and it is 
considered that this is the “diffuse” maximum 
whereas the true diffuse maximum has much lower 
power, by several orders of magnitude being usually 
masked by the instrumental noise. 

Interpretation of observations at narrow FOV of 
the receiver is of a special difficulty, as the distribution 
peak has the delta shape. In this case, the definition 
of pulse duration as the distribution width at half-
maximum becomes meaningless, and the pulse shape 

observed in the experiment is entirely determined by 
time resolution of the recorder. 

At (τD → ∞), a similar multimodal pulse 
structure should smoothly transfer into the 
distribution having true diffusion shape. As follows 
from Fig. 1, the measurement ambiguities disappear at 
the optical thickness about 100 (τD ≈ 10). Below I 
shall show, by means of numerical modeling, fine 
details of the time behavior of the light field from a 
point source in a homogeneous scattering medium as 
well as the transformations of its time distribution at 
infinitely  growing  optical  thickness  of  the  medium.   
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3. Numerical modeling of the signal 
time structure  

It is of primary interest in this study to track 
the behavior of the ratio between the fraction of 
radiation scattered at small angles and the diffuse 
one as a function of the optical thickness of a 
scattering layer. The time structure of the light field 
has been calculated using a model of point isotropic 
source located in a conservative homogeneous 
scattering medium. Therefore, one can expect that the 
scattered radiation will become diffuse faster than in 
the case of a directed beam. 

Modeling of the light field was made by means 
of the Monte Carlo method using the algorithms of 
the local estimate51,52

 for the time-dependent transfer 
equation. It is assumed that a point source 

P0(r, t) = δ(r)δ(t) with the unity intensity is in a 
homogeneous medium with the scattering  coefficient 
σ and the scattering phase function g(γ) = β(γ)/σ 
(β(γ) is the coefficient of directional scattering). At 
the distance Z from the source (at the point r = r°), 
there is placed a point receiver with the cosine 
directional pattern. The first photons reach the 
receiver at T0 = Z/ñ. 

The Monte Carlo method is based on RTE 
solution in the integral form by its expansion into 
the iterative series. For the flux vector, 

4

( ) ( , ) d ,I

π

= ω∫F r r s s  this equation has the form1 
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Here ri( )F r  is the vector of attenuated incident 

radiation flux, ′τ = ε −r r  is the optical length of the 

path between the points of scattering and 
observation. Illumination at the point r° determined 
by scattered radiation is calculated as an estimate of 
a random variable being the sum of the series over 
collisions: 
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where xn = (rn, sn) is the point of n-order scattering, 
s° is the scattering direction leading the photon to 
the point of the receiver, n° is the normal to the 
receiver’s plane. In calculating the photon arrival 
time to the receiver for each term of the series (6), 
one can obtain the signal power P(t) (or, in other 
terminology, the photon distribution over free paths 

l = ct), having in mind that, 

0

( ) d .

T

E P t t

∞

= ∫  In our 

calculations, time axis was uniformly divided, on the 
logarithmic scale, into the intervals with 5 points per 

decade that allowed the fine time structure to of 
radiation be revealed both at short and long times.  
 It is worth considering the details of modeling 
radiation from an isotropic source in media with 
strongly anisotropic scattering. As follows from 
physics of the problem, at not so large optical depth, 
delay time is insignificant and the main contribution 
to illumination comes from the photons, originally 
escaped from the source along the directions close to 
that toward the receiver. 

Under these conditions, taking the emission 
angles equiprobable over the entire sphere, leads to 
underestimate of the signal and increase in its 
variance at the initial moments in time. Therefore, 
this makes it necessary in modeling the initial escape 
directions, to provide preference to photons escaping 
from source at small-angles, by introducing the 
corresponding initial weight of the photon (see, for 
example, Ref. 53). As shown in Ref. 54, reduction of 
the calculated intensity variance in this case is 
connected with the increase in the number of 
trajectories contributing to the intensity at the initial 
moments in time.  

Besides, under conditions of large optical depth 
(τ > 10) one has to avoid calculating the low-order 
scattering of the photons escaped (or scattered) 
toward the receiver by use of a standard “physical” 
modeling of the free path l with the distribution 
density pl(x) = ε exp(–εx).51 In this case the main 
contribution to the signal intensity comes from 
photons that undergo collisions in the near vicinity of 
the receiver. Thus modeling of scattering in this 
region should have enough statistics. Usually, the 
optical thickness is set by the formula τ = –lnα, 
where α is the random variable, that at a reasonable 
number of trajectories (N < 109) does not allow 
obtaining an adequate statistics at optical thickness 
more than 10. In using the generators of random 
numbers in the computer codes like INTEGER*4 
based on integer operations does not allow obtaining 
the optical thickness τ > 21, in principle. Therefore, 
in modeling low-order collisions (from the first to the 
fourth), uniform modeling is used for the photon 
travel path from the point of previous collision to the 
receiver while introducing the corresponding weight. 
Otherwise, a considerable underestimate of radiation 
intensity (by about three orders of magnitude) occurs 
for the initial moments in time. 

The algorithms proposed have already been 
approbated54,56 for the control of optical monitoring 
equipment working in the water medium with 
essential absorption. In this study, the calculations 
were made for the conservative medium (κ = 0), since 
in this case, the diffusion fraction of radiation 
manifests itself much stronger. For comparability 
with data from previous studies four types of 
seawater scattering phase function are used as earlier, 
in modeling the scattering medium, which are 
characterized by a rather high variability of the 
asymmetry parameter. 

The scattering phase functions used were 
measured by experiment in different time by 

(6)
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O.V. Kopelevich and V.M. Pavlov.32 Two scattering 
phase functions have an extreme asymmetry. The least 
forward peaked scattering phase function g1 
(<cosγ> = 0.788) was observed in clear waters of the 
Sargasso Sea, the most forward peaked one g4 
(<cosγ> = 0.987) in waters of the Black Sea. 
Scattering phase functions g2 (<cosγ> = 0.924) and 
g3 (<cosγ> = 0.97) are typical for waters in the open 
ocean. Besides, the molecular scattering phase 
function gm was used, as well. The majority of 
natural water media have significant absorption, and 
the number of photons with large free paths will be 
strongly attenuated according to the well-known 
relation4: 

 P(t, σ, κ ≠ 0) = P(t, σ, κ = 0) exp(–κñt). 

It should be noted that results presented in this 
paper have been obtained in setting the stationary 
value of σ = 0.15 m–1 and variable distance Z between 
the source and the receiver. In calculations, I took 
from 10 up to 200 millions of trajectories depending 
on the type of the scattering phase function and 
position of the time interval on the time axis.  

4. Calculated results 

Let us consider the region of small optical 
thickness (about unity), at which low-order scattering 
and small level of diffuse background are assumed. 
Figures 2 and 3 present the distribution over free 
paths of the photons emitted from the point isotropic 
source in the infinite, homogeneous, and conservative 
scattering medium. Abscissa shows the photon time 
delay Δt relative to the arrival time of the first 
photon (total t = T0 + Δt). Figure 2 shows pulse 
deformation at an increase of the distance from the 
source to the receiver from Z = 0.2 m (τ = 0.03) up to 
Z = 30 m (τ = 4.5) for the medium with g2. Figure 3 
presents the dependences for different scattering 
phase functions and the distance Z = 5 m (τ = 0.75). 
 

 
Fig. 2. Pulse shape for the medium with g2 and different 
distances Z. 

 

 
Fig. 3. Pulse shape for different scattering phase functions 
and Z = 5 m. 

 
It is clear that the distribution is a curve with two 

maxima. The first delta-shaped peak is caused by the 
small-angle scattering at the initial moments in time 
that does not lead to any considerable increase of the 
photon free path. Increasing delay time causes an 
increase in the curve slope, approaching the 
“pseudoasymptotic” with the slope obeying Δt–2 law. 

Then, the second maximum formed by photons 
appears. Delay time of these photons much exceeds 
the travel time T0. It is for sure that here dominate 
the photons scattered at large angles. Stars on the 
curves (see Fig. 2) show the moments at which a half 
of the scattered radiation energy comes. At the 
moment the second maximum occurs, for all distances 
and g2 scattering phase function, about 85–90% of 
scattering energy comes. 

At a large time, distribution takes the 
asymptotic dependence typical for the isotropic 
source in the infinite medium6 P(t) ∼ t–3/2 (dotted 
line in Fig. 3) and statistical modeling for the later 
moments makes no sense since the pulse shape can be 
calculated analytically. The moments tas of 
approaching the asymptotic are shown by the arrows 
in the right-hand part of the curves. In the case of 
strongly forward peaked scattering phase functions 
approaching the asymptotic occurs later compared to 
that in the case of less asymmetric ones. The values 
of the dimensionless time u = σct at tas are 80 for gm 
and 340 for g4. A fraction of energy coming after tas, 
is higher for slightly asymmetric scattering phase 
functions (both absolutely and relatively): it is 3.7% 
for molecular, 0.5% for g1 and only 0.002% for g4 
scattering phase functions. For media with nonzero 
absorption, this residual energy is negligible.  

Figure 4 for Z = 5 m shows energy Et = 
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Fig. 4. Energy of the scattered radiation (Z = 5 m) 
accumulated by the moment Ò0 + Δt in media with different 
scattering phase functions. 
 

Horizontal dot line denotes energy of attenuated 
direct beam. The growth of piled up energy occurs in 
two steps. The first rapid energy increase occurs in 
the initial moments in time due to then dominating 
scattering at small angles. The second one, “diffuse” 
maximum in P(t) distribution leads to the new 
considerable energy increase, moreover, this addition 
of scattered radiation is comparable with the direct 
beam energy Ådir. The two-scale time structure in 
pulse energy is especially evident in media with the 
medium asymmetric scattering phase functions  
(g1 – g3). There is a time interval between the 
maxima for such scattering phase functions (here 
Δt ≈ 10 ns is the delay comparable with the time of 
photon travel along the path), when no energy pile 
up occurs. Thus by this moment in the medium with 
g4, already 96% of energy passes whereas for gm – 
only 25%. 

Now let us consider the transformation of pulse 
time structure at further increase in optical thickness. 
Figure 5 shows the pulse form transformation for the 
medium with g3 for the optical thickness range from 
τ = 1.5 (Z = 10 m, curve 1) up to τ = 150 (1000 m, 
curve 6). The dotted curves 4′–6′ for the 
corresponding optical thickness show the pulse form 
in DA (3). 

First of all, one should notice the gradual 
smoothing and disappearance of the delta-shaped 
peak (it characterizes the range of transient optical 
thickness values) at the optical thickness increasing 
up to the values of 10–15 (curves 2, 3). Hence, a 
new maximum with a finite value of tmax ≠ 0 is 
formed. The small-angle scattering still may play the 
main role in this value but its duration is already 
determined and can be measured in the experiment. 
We shall point out once more that the delta-shaped 
peak observed in the initial moments in time at small 
distances, has no duration in terms of the pulse width 
at half-maximum. The ratio between amplitudes and 

duration of maxima due to small-angle and diffuse 
scattering at τ = 15 makes some orders of magnitude 
and they cannot be measured in the experiment 
simultaneously. It is just this circumstance that 
introduces ambiguity to the measurements in the 
region of transient optical thickness. At τ = 30 
(curve 4), the delta-shaped peak completely 
disappears. However, DA (dot line 4′) even at this 
optical thickness describes the height and shape of 
the distribution quite wrongly. 

 

 
Fig. 5. Pulse shape for the entire range of optical thickness 
values and g3. Curve 1 is Z = 10 m (τ = 1.5); 2 is 60 
(τ = 9); 3 is 100 (τ = 15); 4 is 200 (τ = 30); 5 is 400 
(τ = 60); 6 is 1000 (τ = 150). 

 
Thus, there are two maxima in photon 

distribution over free paths for the point radiation 
source starting with the region of transient optical 
thickness (τ = 10–15). Each of these maxima moves, 
at increasing optical thickness to the region of longer 
times and its amplitude decreases. The maximum 
shift for the first peak is faster than that determined 
by the quadratic dependence for DA (4), whereas 
diffuse maximum, on the contrary, sifts slower. The 
position of the inflection point between the peaks 
(see the dashed line Δt–2 in Fig. 5) best corresponds 
to the dependence according to formula (4). As a 
result, the two peaks gradually become closer as τ 
increases and for τ = 150 (curve 6), the peaks almost 
merge. From this very optical thickness DA (curve 6′) 
describes the photon distribution over free paths 
satisfactorily, although, the distribution excess over 
the diffusion one is still noticeable on its short-time 
side. We shall remind that DA applicability is 
determined by large value of transport optical 
thickness τD = τ(1 – <cosγ>), which for Z = 1000 m 
and g3 ((1 – <cosγ>) = 0.03) makes 4.5. One can 
count that it considerably exceeds the unity. 
Respectively, for the scattering phase functions with 
lower asymmetry, the peaks merge at smaller optical 
thickness and DA becomes valid earlier.  
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Some words are to be said on the validity and 
conditional character of the interpretation proposed 
in this paper of the maxima in P(t) distribution as 
being formed by radiation scattered at small angles 
and by the diffuse radiation. Predominance of the 
small-angle scattering is obvious enough in media 
with forward peaked scattering phase function at 
small optical thickness and in the initial moments in 
time, but at τ ≈ 10, it requires refinement. 
Elongation of the photon free path at θ << 1 is less 
than the entire path length and makes value 
Δts ≈ T0θ

2/2. In Fig. 5, stars mark the Δts, 
corresponding to the scattering angle 10° 
(θ2/2 = 0.015). 

One can consider that up to τ = 15 (curve 3), the 
first maximum is completely formed by the radiation 
scattered at small angles θ < 10°. The large-angle 
scattering plays the main role in the first maximum 
at large distances. It leads to gradual wash out of the 
bimodal structure. At the same time, “diffuse” 
maximum cannot be uniquely interpreted as a 
completely formed diffuse background, where the 
photons forget the initial direction they were emitted 
along. At small τ,55 the determining contribution 
comes, within this time interval, from the low-order 
scattering from the hemisphere behind the source to 
the angle close to 180°. The DA50 also shows the 
effect of scattering medium geometry on the pulse 
broadening. 

It is known that for the semi-infinite medium 
(the radiation source is at the medium boundary, and 
the receiver is in the medium depth), asymptotic drop 
is described by the dependence  t–5/2

 (Ref. 6), whereas 
for the infinite medium – by the t–3/2 dependence. At 
τ = 15, the distribution shape for these two cases is 
shown in Fig. 6 (scattering phase function g3). 

 

 
Fig. 6. Distribution over free paths for infinite (1) and 
semi-infinite (2) medium. Scattering phase function g3, 
τ = 15. 

Illumination for the semi-infinite layer (curve 2) 
in the whole time interval is expressed through the 
corresponding signal for the infinite medium as 
P(t) = P∞(t)T0/t, that agrees with results of 
diffusion theories.6,16 It is characteristic that diffuse 
maximum amplitude (at Δt = 600 ns) falls down for 
the semi-infinite medium by 5 times, hence, the main 
contribution comes from the opposite hemisphere 
(with respect to the receiver) behind the source. Thus 
real diffuse mode, when the photons forget the place 
of their origin, has not yet been formed at τ = 15, 
and DA (dot line) describes neither small-angle nor 
diffuse maxima. It also should be noted here that 
pulse duration depends also on the transverse 
dimensions of the scattering medium. The 
calculations by Bucher30 have shown that at 
cylindrical cloud geometry (diameter is 
approximately equal to the distance), pulse duration 
decreases by 3 to 6 times. Decrease of the duration 
by 3 times has also been recorded in the experiments 
by Vergoun24 in the chamber with the  diameter 
equal to its half-length.  

Conclusions 

Photon distribution over free paths in the region 
of small and transient optical thickness (τ = εZ >> 1, 
but transport optical length τD = τ(1 – <cosγ>) is 
not large yet) has the shape of a bimodal curve. At 
small τ, the first delta-shaped peak is determined by 
the small-angle scattering, the second one, “diffuse” 
maximum includes the large-angle scattering. At 
increase in the optical distance, τ, between the source 
and the receiver, the position of both maxima and the 
inflection point between them is moved to the longer 
times. Consequently, the fraction of energy in the 
diffuse maximum is determined, first of all, by the 
scattering phase function asymmetry and weakly 
depends on τ. 

In the region of transient optical thickness, 
there is an ambiguity in measurements of the pulse 
duration due to limited dynamic range of photo 
detectors and different ratios between time resolution 
of the equipment and the length of the measurement 
path. At further increase in optical thickness, the 
ambiguity disappears since the maxima positions 
become closer, and at τ = 150 (τD = 4.5) they are 
merged into a single maximum. The shape of this 
maximum is satisfactorily described by DA. 
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