Vol. 38, issue 08, article # 8

Kuzminykh R. A., Raputa V. F., Lezhenin A. A., Gradov V. S. Estimation of smoke plume rise rates from thermal power plant stacks using satellite images. // Optika Atmosfery i Okeana. 2025. V. 38. No. 08. P. 652–658. DOI: 10.15372/AOO20250808 [in Russian].
Copy the reference to clipboard

Abstract:

Use of high stacks for removal of hydrocarbon fuel combustion products at thermal power plants allows to significantly reduce air pollution levels. The article discusses a method for estimating the rise rates and buoyancy flows of smoke emissions from thermal power plant stacks based on similarity and dimensionality relationships, hydrodynamic models, and satellite information. The proposed method was tested using a winter satellite image of smoke plumes and their shadows on the earth's surface as applied to the high stacks of the Gusinoozerskaya GRES. The wind and air temperature fields were calculated using the WRF mesoscale model adapted to the Baikal natural territory. The results of the study enable, under conditions of very limited input information, to characterize the active stage of smoke plume rise and to monitor the modes of impurity emissions from industrial enterprise stacks based on buoyancy flow estimates.

Keywords:

atmosphere, pollution, thermal power plant, smoke emission, plume rise, evaluation model, satellite observations

Figures:

References:

1. Balter B.M., Balter D.B., Egorov V.V., Stal'naya M.V. Ispol'zovanie dannykh ISZ Landsat dlya opredeleniya kontsentratsii zagryaznitelei v shleifakh ot produvki gazovykh skvajin na osnovanii modeli istochnika // Issled. Zemli iz kosmosa. 2014. N 2. P. 55–66. DOI: 10.7868/S0205961414020031.
2. Gribkov A.M., Chichirova N.D., Mirsalikhov K.M. Opredelenie traektorii dymovogo fakela s ispol'zovaniem sputnikovykh snimkov // Izv. vuzov. Problemy energetiki. 2024. V. 26, N 3. P. 132–145. DOI: 10.30724/1998-9903-2024-26-3-132-145.
3. Tikhonov N.A., Zakharova S.A., Davydova M.A. Modelirovanie dinamiki obrazovaniya shleifa NO2 ot tochechnogo istochnika // Optika atmosf. i okeana. 2020. V. 33, N 9. P. 722–727. DOI: 10.15372/AOO20200909; Tikhonov N.A., Zakharova S.A., Davydova M.A. Simulation of the dynamics of an NO2 plume from a point source // Atmos. Ocean. Opt. 2021. V. 34, N 1. P. 45–49.
4. Postylyakov O.V., Borovski A.N., Elansky N.F., Davydova M.A. Preliminary validation of high-detailed GSA/RESURS-P tropospheric NO2 maps with alternative satellite measurements and transport simulations // Proc. SPIE. 2019. V. 11152. P. 106–112.
5. Sofiev M., Ermakova T., Vankevich R. Evaluation of the smoke-injection height from wild-land fires using remote-sensing data // Atmos. Chem. Phys. 2012. N 12. P. 1995–2006. DOI: 10.5194/acp-12-1995-2012.
6. Lupyan E.A., Bartalev S.A., Balashov I.V., Egorov V.A., Ershov D.V., Kobets D.A., Sen'ko K.S., Stytsenko F.V., Sychugov I.G. Sputnikovyi monitoring lesnykh pojarov v 21-m veke na territorii Rossiiskoi Federatsii (tsifry i fakty po dannym detektirovaniya aktivnogo goreniya) // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2017. V. 14, N 6. P. 158–175. DOI: 10.21046/2070-7401-2017-14-6-158-175.
7. Briggs G.A. A Plume rise model compared with observations // J. Air Pollut. Control Association. 1965. V. 15, N 9. P. 433–438. DOI: 10.1080/00022470.1965.10468404.
8. Vankevich P.E., Ermakova T.S., Sofiev M.A. Sravnenie rezul'tatov vychisleniya vysoty pod"ema strui dyma ot lesnykh pojarov po poluempiricheskim formulam i odnomernoi modeli BUOYANT // Uchenye zapiski. 2011. N 19. P. 61–70.
9. Ivanov E.A., Klepikova N.V., Troyanova N.I., Freimundt G.N. Metody rascheta pod"ema fakela iz ventilyatsionnoi truby // Apparatura i novosti radiatsionnykh izmerenii. 2014. N 4. P. 18–32.
10. Mirsalikhov K.M., Gribkov A.M., Chichirova N.D. Analiticheskii obzor metodik vybora optimal'nykh parametrov dymovykh trub // Izv. vuzov. Problemy energetiki. 2021. V. 23, N 1. P. 131–145. DOI: 10.30724/1998-9903-2021-23-1-131-145.
11. Verkhozina E.V., Safarov A.S., Makukhin V.L., Verkhozina V.A. Modelirovanie perenosa vybrosov tverdykh vzvesei predpriyatiyami teploenergetiki na tsentral'nuyu ekologicheskuyu zonu Baikal'skoi prirodnoi territorii // Voda: khimiya i ekologiya. 2017. N 11, 12(113). P. 20–27.
12. Obolkin V., Molozhnikova E., Shikhovtsev M., Netsvetaeva O., Khodzher T. Sulfur and nitrogen oxides in the atmosphere of Lake Baikal: Sources, automatic monitoring and environmental risks // Atmosphere. 2021. N 12. P. 1348. DOI: 10.3390/atmos12101348.
13. Tohidi A., Kaye N. Highly buoyant bent-over plumes in a boundary layer // Atmos. Environ. 2016. V. 131. P. 97–114. DOI: 10.1016/j.atmosenv.2016.01.046.
14. Marro M., Salizzoni P., Cierco F., Korsakissok I., Danzi E., Soulhac L. Plume rise and spread in buoyant releases from elevated sources in the lower atmosphere // Environ. Fluid Mech. 2014. V. 14. P. 201–219.
15. Bhargava A. Effect of wind speed and stack height on plume rise using different equations // Int. J. Engin. Sci. Comput. 2016. V. 6, N 4. P. 3228–3234. DOI: 10.4010/2016.748.
16. Luk'yanov A.N., Gan'shin A.V., Yushkov V.A., Vyazankin A.S. Traektornoe modelirovanie srednei atmosfery // Meteorol. i gidrol. 2021. N 9. P. 95–104. DOI: 10.52002/0130-2906-2021-9-95-104.
17. Maureeab D., Nadege M., Clappiera A. Multi-scale modeling of the urban meteorology: Integration of a new canopy model in the WRF model // Urban Clim. 2018. V. 26. P. 60–75.
18. Amikishieva R.A., Raputa V.F., Lejenin A.A. Otsenivanie traektorii pod"ema dymovykh smesei ot vysotnykh trub po sputnikovoi informatsii // Vychislitel'nye tekhnologii. 2023. V. 28, N 6. P. 6–16. DOI: 10.25743/ICT.2023.28.6.002.
19. Fadova A.A., Kucherik G.V., Zablotskaya E.V. Otsenka kachestva atmosfernogo vozdukha raiona razmeshcheniya osnovnoi ploshchadki aktsionernogo obshchestva «Inter RAO – Elektrogeneratsiya» // Energeticheskie ustanovki i tekhnologii. 2020. V. 6, N 2. P. 138–145.
29. Skamarock W.C., Klemp J.B., Dudhia J., Gill D.O., Liu Z., Berner J., Wang W., Powers J.G., Duda M.G., Barker D.M., Huang X.Y. A Description of the advanced research WRF Version 4 // 2019. NCAR Tech. Note NCAR/TN-556+STR. 145 p. DOI: 10.5065/1dfh-6p97.
21. Weather Research and Forecasting (WRF) Model. URL: https://www.mmm.ucar.edu/weather-research-and-forecasting-model (last access: 17.10.2024).
22. Gribkov A.M., Zroichikov N.A., Prokhorov V.B. Formirovanie traektorii dymovogo fakela pri nalichii samookutyvaniya ogolovka dymovoi truby // Teploenergetika. 2017. N 10. P. 51–59. DOI: 10.1134/S0040363617100034.
23. Raputa V.F., Lezhenin A.A. Otsenka vysoty pod"ema dymovogo shleifa po sputnikovym snimkam // Optika atmosf. i okeana. 2020. V. 33, N 6. P. 471–475. DOI: 10.15372/AOO20200609; Raputa V.F., Lezhenin A.A. Estimation of the altitude of smoke plumes from satellite images // Atmos. Ocean. Opt. 2020. V. 33, N 5. P. 539–544.