Vol. 38, issue 08, article # 10
Copy the reference to clipboard
Abstract:
The paper presents a database of backscattered light matrices for all typical shapes of ice crystals in cirrus clouds, including an aggregate of eight hexagonal columns, which is often used in research. The case of random orientation of a particle in space is considered. A unique feature of this database, in contrast to its analogues, is that it presents solutions for all typical convex crystals of cirrus clouds, as well as particles of a typical non-convex shape – an aggregate. The solution is derived for the particle size range from 10 to 1000 mm for three most commonly used lidar wavelengths: 0.355, 0.532, and 1.064 mm. This database is extremely important for the development of algorithms for interpreting laser polarization sounding data from cirrus clouds using both ground-based and space-based lidars. The database is available in the public domain in a simple text format to facilitate its use by a wide range of scientists.
Keywords:
database, backscattering matrix, physical optics method, atmospheric ice crystals, aggregate, cirrus clouds, random orientation
Figures:
References:
1. Liou K.-N. Influence of cirrus clouds on the weather and climate process: A global perspective // Mon. Weather Rev. 1986. V. 114. P. 1167–1199. DOI: 10.1175/1520-0493(1986)114%3C1167:IOCCOW%3E2.0.CO;2.
2. Krämer M., Schiller C., Afchine A., Bauer R., Gensch I., Mangold A., Schlicht S., Spelten N., Sitnikov N., Borrmann S., de Reus M., Spichtinger P. Ice supersaturations and cirrus cloud crystal numbers // Atmos. Chem. Phys. 2009. V. 9, N 11. P. 3505–3522. DOI: 10.5194/acp-9-3505-2009.
3. Nazaryan H., McCormick M.P., Menzel W.P. Global characterization of cirrus clouds using CALIPSO data // J. Geophys. Res. 2008. V. D16211. P. 113. DOI: 10.1029/2007JD009481.
4. Schnaiter M., Büttner S., Möhler O., Skrotzki J., Vragel M., Wagner R. Influence of particle size and shape on the backscattering linear depolarisation ratio of small ice crystals – cloud chamber measurements in the context of contrail and cirrus microphysics // Atmos. Chem. Phys. 2012. V. 12, N 21. P. 10465. DOI: 10.5194/acp-12-10465-2012.
5. Liou K.-N., Yang P. Light Scattering by Ice Crystals: Fundamentals and Applications. Cambridge: Cambridge University Press, 2016. 460 p.
6. Yang P., Bi L., Baum B.A., Liou K.-N., Kattawar G.W., Mishchenko M.I., Cole B. Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 mm // J. Atmos. Sci. 2013. V. 70, N 1. P. 330–347. DOI: 10.1175/JAS-D-12-039.1.
7. Bi L., Yang P. Improved ice particle optical property simulations in the ultraviolet to far-infrared regime // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 189. P. 228–237. DOI: 10.1016/j.jqsrt.2016.12.007.
8. Platnick S., Meyer K.G., King M.D., Wind G., Amarasinghe N., Marchant B., Arnold G.T., Zhang Z., Hubanks P.A., Holz R.E., Yang P., Ridgway W.L., Riedi J. The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua // IEEE Trans. Geosci. Remote Sens. 2017. V. 55, N 1. P. 502–525. DOI: 10.1109/TGRS.2016.2610522.
9. Zhou C., Yang P. Backscattering peak of ice cloud particles // Opt. Express. 2015. V. 23. P. 11995–12003. DOI: 10.1364/OE.23.011995.
10. Tkachev I.V., Timofeev D.N., Kustova N.V., Konoshonkin A.V. Bank dannykh matrits obratnogo rasseyaniya sveta na atmosfernykh ledyanykh kristallakh razmerami 10–100 m dlya interpretatsii dannykh lazernogo zondirovaniya // Optika atmosf. i okeana. 2021. V. 34, N 3. P. 199–206. DOI: 10.15372/AOO20210306.
11. Mitchell D.L., Mishra S., Lawson R.P. Planet Earth 2011 – Global warming challenges and opportunities for policy and practice. Cirrus clouds and climate engineering: New findings on ice nucleation and theoretical basis. // InTechOpen. 2011. P. 257–288. DOI: 10.5772/24664.
12. ScIce: Database for optical properties of realistic ice particles of cirrus clouds [Elektronnyi resurs]. URL: http://scice.konoshonkin.com (last access: 19.03.2025).
13. Baran A.J. A review of the light scattering properties of cirrus // J. Quant. Spectrosc. Radiat. Transfer. 2009. V. 110, N 14–16. P. 1239–1260. DOI: 10.1016/j.jqsrt.2009.02.026.
14. Timofeev D., Kustova N., Shishko V., Konoshonkin A. Light-scattering properties for aggregates of atmospheric ice crystals within the physical optics approximation // Atmosphere. 2023. V. 14, N 6. P. 933. DOI: 10.3390/atmos14060933.
15. Baran A.J. From the single-scattering properties of ice crystals to climate prediction: A way forward // Atmos. Res. 2012. V. 112. P. 45–69. DOI: 10.1016/j.atmosres.2012.04.010.
16. Mitchell D.L., Arnott W.P. A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II: Dependence of absorption and extinction on ice crystal morphology // J. Atmos. Sci. 1994. V. 51. P. 817–832. DOI: 10.1175/1520-0469(1994)051<0817:AMPTEO>2.0.CO;2.
17. Auer A.H., Veal D.L. The dimension of ice crystals in natural clouds // J. Atmos. Sci. 1970. V. 27, N 6. P. 919–926. DOI: 10.1175/1520-0469(1970)027<0919:TDOICI>2.0.CO;2.
18. Um J., McFarquhar G.M. Single-scattering properties of aggregates of bullet rosettes in cirrus // J. Appl. Meteor. Climatol. 2007. V. 46, N 6. P. 757–775. DOI: 10.1175/JAM2501.1.
19. Yang P., Baum B.A., Heymsfield A.J., Hu Y.X., Huang H.-L., Tsay S.-C., Ackerman S. Single-scattering properties of droxtals // J. Quant. Spectrosc. Radiat. Transfer. 2003. V. 79–80. P. 1159–1169. DOI: 10.1016/S0022-4073(02)00347-3.
20. Shishko V.A., Tkachev I.V., Timofeev D.N., Kustova N.V., Konoshonkin A.V. Opticheskie kharakteristiki ledyanykh atmosfernykh kristallov proizvol'noi formy s raznym kolichestvom granei dlya zadach lazernogo zondirovaniya // Optika atmosf. i okeana. 2024. V. 37, N 10. P. 868–873. DOI: 10.15372/AOO20241009; Shishko V.A., Tkachev I.V., Timofeev D.N., Kustova N.V., Konoshonkin A.V. Optical properties of atmospheric ice crystals of arbitrary shape with different number of facets for problems of laser sensing // Atmos. Ocean. Opt. 2025. V. 38, N 1. P. 90–95.
21. Um J., McFarquhar G.M., Hong Y.P., Lee S.-S., Jung C.H., Lawson R.P., Mo Q. Dimensions and aspect ratios of natural ice crystals // Atmos. Chem. Phys. 2015. V. 15. P. 3933–3956. DOI: 10.5194/acp-15-3933-2015.
22. Saito M., Yang P. Generalization of atmospheric nonspherical particle size: Interconversions of size distributions and optical equivalence // J. Atmos. Sci. 2022. V. 79, N 12. P. 3333–3349. DOI: 10.1175/JAS-D-22-0086.1.
23. Warren S.G., Brandt R.E. Optical constants of ice from the ultraviolet to the microwave: A revised compilation // J. Geophys. Res. 2008. V. D14220. P. 113. DOI: 10.1029/2007JD009744.
24. Timofeev D.N., Konoshonkin A.V., Kustova N.V., Shishko V.A., Borovoi A.G. Otsenka vliyaniya pogloshcheniya na rasseyanie sveta na atmosfernykh ledyanykh chastitsakh dlya dlin voln, kharakternykh dlya zadach lazernogo zondirovaniya atmosfery // Optika atmosf. i okeana. 2019. V. 32, N 5. P. 381–385. DOI: 10.15372/AOO20190507; Timofeev D.N., Konoshonkin A.V., Kustova N.V., Shishko V.A., Borovoi A.G. Estimation of the absorption effect on light scattering by atmospheric ice crystals for wavelengths typical for problems of laser sounding of the atmosphere // Atmos. Ocean. Opt. 2019. V. 32, N 5. P. 564–568. DOI: 10.1134/S1024856019050178.
25. Mishchenko M.I., Hovenier J.W., Travis L.D. Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications. San Diego: Academic Press, 1999. 690 p.
26. Vouk V. Projected area of convex bodies // Nature. 1948. V. 162. P. 330–331. DOI: 10.1038/162330a0.
27. Saito M., Yang P. Quantifying the impact of the surface roughness of hexagonal ice crystals on backscattering properties for lidar-based remote sensing applications // J. Geophys. Res. Letters. 2023. V. 50. P. e2023GL104175. DOI: 10.1029/2023GL104175.
28. Bi L., Yang P. Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding T-matrix method // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 138. P. 17–35. DOI: 10.1016/j.jqsrt.2014.01.013.
29. Yang P., Liou K.N. Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals // Appl. Opt. 1996. V. 35, N 33. P. 6568–6584. DOI: 10.1364/ao.35.006568.
30. Shishko V., Konoshonkin A., Kustova N., Timofeev D., Borovoi A. Coherent and incoherent backscattering by a single large particle of irregular shape // Opt. Express. 2019. V. 27, N 23. P. 32984–32993. DOI: 10.1364/oe.27.032984.
31. Zhu X., Wang Z., Liu D., Cai H. The first global insight of cirrus clouds characterized by hollow ice crystals from space-borne lidar // J. Geophys. Res. Letters. 2024. V. 51. P. e2024GL109852. DOI: 10.1029/2024GL109852.
32. Sato K., Okamoto H., Nishizawa T., Jin Y., Nakajima T.Y., Wang M., Satoh M., Roh W., Ishimoto H., Kudo R. JAXA Level 2 cloud and precipitation microphysics retrievals based on EarthCARE radar, lidar, and imager: The CPR_CLP, AC_CLP, and ACM_CLP products // Atmos. Meas. Tech. 2025. V. 18, N 5. P. 1325–1338. DOI: 10.5194/amt-18-1325-2025.