Vol. 38, issue 07, article # 9
Copy the reference to clipboard
Abstract:
In the context of accelerated warming in the Arctic, the study of changes in permafrost zone characteristics is a question of high interest. The paper analyzes current and future changes in climate variables (surface air temperature, soil temperature at depth, precipitation, and snow cover depth) in the Arctic part of Western Siberia based on the ERA5 reanalysis and CMIP6 modeling data. The contribution of climate variables to the variability of the soil temperature at depth is estimated in three climate scenarios (Historical, SSP2-4.5, SSP5-8.5). The surface air temperature, soil temperature at depth, and precipitation are predicted to increase in all seasons by the end of the 21st century, while the snow cover depth will decrease. This will result in an increase in the area and depth of seasonal thawing layer and a northward shift of the southern boundary of permafrost zone. According to the SSP5-8.5 scenario, the annual average soil temperature zero isotherm will be located at a depth of ~ 6 m at latitude of 70° N (the territory between the Gulf of Ob and the Lower Yenisei Upland). Currently, the influence of the climate variables on changes in the soil temperature at depth is maximal in summer (due to air temperature) and autumn (due to snow cover) with their maximum contribution in October (up to 60% at a depth of 1 m). According to the SSP5-8.5 scenario, a decrease in the contribution of climate variables in summer and its increase in November are expected. By the end of the 21st century, the predominant contribution to the variability of the permafrost zone characteristics will belong to summer precipitation. The results can be used in studies and simulation of changes in the permafrost zone characteristics.
Keywords:
air temperature, soil temperature at depth, snow depth, atmospheric precipitation, ERA5 reanalysis, CMIP6, permafrost, climatic projection, Arctic
References:
1. Doklad ob osobennostyah klimata na territorii Rossiiskoi Federatsii za 2014 year. M.: Rosgidromet, 2015. 107 p.
2. Anisimov O.A., Belolutskaya M.A. Otsenka vliyaniya izmeneniya klimata i degradatsii vechnoi merzloty na infrastrukturu v severnyh regionah Rossii // Meteorol. i gidrol. 2002. N 6. P. 15–22.
3. Streletskii D.A., Shiklomanov N.I., Grebenets V.I. Izmenenie nesushchei sposobnosti merzlyh gruntov v svyazi s potepleniem klimata na severe Zapadnoi Sibiri // Kriosfera Zemli. 2012. V. 16, N 1. P. 22–32.
4. Anisimov O.A., Kokorev V.A., Zhiltcova E.L. Arctic ecosystems and their services under changing climate: Predictive modelling assessment // Geograph. Rev. 2017. V. 107, N 1. P. 108–124. DOI: 10.1111/j.1931-0846.2016.12199.x.
5. Anisimov O.A., Lavrov S.A., Reneva S.A. Emissiya metana iz mnogoletnemerzlyh bolot Rossii v usloviyah izmeneniya klimata // Problemy ekologicheskogo modelirovaniya i monitoringa ekosistem. SPb.: Gidrometeoizdat, 2005. P. 124–142.
6. Vasil'ev A.A., Gravis A.G., Gubar'kov A.A., Drozdov D.S., Korostelev Yu.V., Malkova G.V., Oblogov G.E., Ponomareva O.E., Sadurtdinov M.R., Streletskaya I.D., Streletskii D.A., Ustinova E.V., Shirokov R.S. Degradatsiya merzloty: rezul'taty mnogoletnego geokriologicheskogo monitoringa v zapadnom sektore rossiiskoi Arktiki // Kriosfera Zemli. 2020. V. 24, N 2. P. 15–30. DOI: 10.21782/ KZ1560-7496-2020-2(15-30).
7. Magnússon R.Í., Hamm A., Karsanaev S.V., Limpens J., Kleijn D., Frampton A., Maximov T.C., Heijmans M.M.P.D. Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra // Nat. Commun. 2022. V. 13. P. 1556. DOI: 10.1038/s41467-022-29248-x.
8. Aleksandrov G.A., Ginzburg A.S., Gitarskii M.L., Chernokul'skii A.V., Semenov V.A. Izmenenie klimatologicheskoi granitsy mnogoletnei merzloty v Bol'shezemel'skoi tundre pri razlichnyh stsenariyah izmeneniya klimata v XXI veke // Dokl. RAN. Nauki o Zemle. 2024. V. 516, N 2. P. 649–654. DOI: 10.31857/S2686739724060184.
9. Mohov I.I., Malahova V.V., Arjanov M.M. Model'nye otsenki vnutri- i mejvekovoi degradatsii «vechnoi merzloty» v regione poluostrova YAmal pri poteplenii // Dokl. RAN. Nauki o Zemle. 2022. V. 506, N 2. P. 219–226. DOI: 10.31857/S2686739722100383.
10. Sherstyukov A.B., Sherstyukov B.G. Prostranstvennye osobennosti i novye tendentsii v izmeneniyah termicheskogo sostoyaniya pochvogruntov i glubiny ih sezonnogo protaivaniya v zone mnogoletnei merzloty // Meteorol. i gidrol. 2015. N 2. P. 5–12.
11. Kharyutkina E.V., Loginov S.V. Tendentsii vremennyh izmenenii temperatury pochvy na glubinah v Zapadnoi Sibiri po dannym reanaliza // Geografiya i prirodnye resursy. 2019. N 2. P. 95–102. DOI: 10.21782/GIPR0206-1619-2019-2(95-102).
12. Alexandrov G.A., Ginzburg V.A., Insarov G.E., Romanovskaya A.A. CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario // Clim. Change. 2021. V. 169, N. 3. P. 42. DOI: 10.1007/s10584-021-03292-w.
13. Knutti R., Masson D., Gettelman A. Climate model genealogy: Generation CMIP5 and how we got there // Geophys. Res. Lett. 2013. V. 40. P. 1194–1199. DOI: 10.1002/grl.50256.
14. Hurrell J.W., Holland M.M., Gent P.R., Ghan S., Kay J.E., Kushner P.J., Lamarque J.-F., Large W.G., Lawrence D., Lindsay K., Lipscomb W.H., Long M.C., Mahowald N., Marsh D.R., Neale R.B., Rasch P., Vavrus S., Vertenstein M., Bader D., Collins W.D., Hack J.J., Kiehl J., Marshall S. The Community Earth System Model: A framework for collaborative research // Bull. Am. Meteorol. Soc. 2013. V. 94, N 9. P. 1339–1360. DOI: 10.1175/BAMS-D-12-00121.1.
15. O'Neill B.C., Tebaldi C., van Vuuren D.P., Eyring V., Friedlingstein P., Hurtt G., Knutti R., Kriegler E., Lamarque J.-F., Lowe J., Meehl G.A., Moss R., Riahi K., Sanderson B.M. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 // Geosci. Model Dev. 2016. V. 9. P. 3461–3482. DOI: 10.5194/gmd-2016-84.
16. Gavrilova M.K. Sovremennyi klimat i vechnaya merzlota na kontinentah. Novosibirsk: Nauka, 1981. 112 p.
17. Zhang T., Heginbottom J.A., Barry R.G., Brown J. Further statistics of the distribution of permafrost and ground ice in the Northern Hemisphere // Polar Geography. 2000. N 2. P. 126–131. DOI: 10.1080/10889370009377692.
18. Belolutskaya M.A. Vliyanie izmeneniya klimata na vechnuyu merzlotu i injenernuyu infrastrukturu Krainego Severa: dis. ... kand. fiz.-mat. nauk. SPb., Gl. geofiz. observatoriya im. A.I. Voeikova, 2004. 127 p.
19. Anisimov O.A., Badina S.V., Belolutskaya M.A., Volodin E.M., Lavrov S.A., Sherstyukov B.G., Streletskii D.A., Kokorev V.A., Gaida I., Dobroslavskii N. Izmenenie klimata v Rossiiskoi Arktike: riski i novye vozmojnosti. M.: FGBU «Gosudarstvennyi gidrologicheskii institut», Tsentr energetiki Moskovskoi shkoly upravleniya SKOLKOVO, 2022. 105 p.
20. Von Storch H., Zwiers F.W. Statistical Analysis in Climate Research. Cambridge: Cambridge University Press, 2003. 484 p.
21. Dreiper N., Smit G. Prikladnoi regressionnyi analiz. M.: Izdatelskii dom «Vil'yams», 2007. 912 p.
22. Peng X., Zhang T., Frauenfeld O.W., Du R., Wei Q., Liang B. Soil freeze depth variability across Eurasia during 1850–2100 // Clim. Change. 2020. V. 158. P. 531–549. DOI: 10.1007/s10584-019-02586-4.
23. Arjanov M.M., Eliseev A.V., Demchenko P.F., Mohov I.I. Modelirovanie izmenenii temperaturnogo i gidrologicheskogo rejimov pripoverhnostnoi merzloty s ispol'zovaniem klimaticheskih dannyh (reanaliza) // Kriosfera Zemli. 2007. V. XI, N 4. P. 65–69.
24. Kharyutkina E.V., Loginov S.V., Usova E.I., Martynova Yu.V., Pustovalov K.N. Tendentsii izmeneniya ekstremal'nosti klimata Zapadnoi Sibiri v kontse XX – nachale XXI vekov // Fundam. i prikl. klimatol. 2019. V. 2. P. 45–65. DOI: 10.21513/2410-8758-2019-2-45-65.
25. Kharyutkina E.V., Loginov S.V., Moraru E.I., Pustovalov K.N., Martynova Yu.V. Dinamika kharakteristik ekstremal'nosti klimata i tendentsii opasnykh meteorologicheskikh yavlenii na territorii Zapadnoi Sibiri // Optika atmosf. i okeana. 2022. V. 35, N 2. P. 136–142. DOI: 10.15372/AOO20220208; Kharyutkina E.V., Loginov S.V., Moraru E.I., Pustovalov K.N., Martynova Yu.V. Dynamics of extreme climatic characteristics and trends of dangerous meteorological phenomena over the territory of Western Siberia // Atmos. Ocean. Opt. 2022. V. 35, N 4. P. 394–401.
26. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change / V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou (eds.). Cambridge: Cambridge University Press, 2021. 2391 p.
27. Tretii otsenochnyi doklad ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii. Obshchee rezyume. SPb.: Naukoemkie tekhnologii, 2022. 124 p.
28. Frauenfeld O.W., Zhang T. An observational 71-year history of seasonally frozen ground changes in the Eurasian high latitudes // Environ. Res. Lett. 2011. V. 6, N 4. P. 044024. DOI: 10.1088/1748-9326/6/4/044024.
29. Ekerman H.J., Johansson M. Thawing permafrost and thicker active layers in sub-arctic Sweden // Permaf. Perigl. Proc. 2008. V. 19, N 3. P. 279–292. DOI: 10.1002/ppp.626.
30. Chadburn S.E., Burke E.J., Cox P.M., Friedlingstein P., Hugelius G., Westermann S. An observation-based constraint on permafrost loss as a function of global warming // Nat. Clim. Change. 2017. V. 7, N 5. P. 340–344. DOI: 10.1038/nclimate3262.
31. Jorgenson M., Romanovsky V.E., Harden J.W., Shur Y., O’Donnell J.A., Schuur E.A.G., Kanevskiy M., Marchenko S. Resilience and vulnerability of permafrost to climate change // Can. J. For. Res. 2010. V. 40. P. 1219–1236. DOI: 10.1139/X10-060.
32. Smith M.W. Microclimatic influences on ground temperatures and permafrost distribution, Mackenzie Delta, Northwest Territories // Can. J. Earth Sci. 1975. V. 12. P. 1421–1438. DOI: 10.1139/e75-129.
33. Frauenfeld O.W., Zhang T., Barry R.G., Gilichinsky D. Interdecadal changes in seasonal freeze and thaw depths in Russia // J. Geophys. Res.: Atmos. 2004. V. 109, N. D5. DOI: 10.1029/2003JD004245.