Vol. 38, issue 01, article # 3
Copy the reference to clipboard
Abstract:
The development of the turbulence theory should be aimed at studying not only incompressible vortices but also the adiabatic component, first of all, pressure and density fluctuations. The intensity of the pressure fluctuations is compared with fluctuations of the potentially available energy of Lagrangian particles. An equation linking the smoothing of entropy fluctuations with the rate of generation of adiabatic fluctuations is proposed. The rate constant of entropy fluctuation smoothing is estimated from measurements in the atmospheric boundary layer. This constant allows us to relate the integral spatial scale of turbulent vortices to the standard deviation of the sound speed fluctuations in the atmospheric boundary layer. Estimates of the adiabatic noise amplitude in the turbulent medium are constructed and the relation between its energy, and the correlation time of the vortex velocity fluctuations is shown.
Keywords:
turbulence, adiabatic fluctuations, available energy, dissipation rate of sound speed fluctuations
References:
1. Shcheglov P.V. Problemy opticheskoi astronomii. M.: Nauka, 1980. 271 p.
2. Tatarskii V.I. Rasprostranenie voln v turbulentnoi atmosfere. M.: Nauka, 1967. 548 p.
3. Obukhov A.M. Turbulentnost' i dinamika atmosfery. L.: Gidrometeoizdat, 1988. 413 p.
4. Rytov S.N., Kravtsov Yu.A., Tatarskii V.I. Vvedenie v statisticheskuyu radiofiziku. V. 2. Sluchainye polya. M.: Nauka, 1978. 463 p.
5. Frish U. Turbulentnost'. Nasledie Kolmogorova. M.: Nauka, 1998. 343 p.
6. Batchelor G.K. The Theory of Homogeneous Turbulence. Cambridge: Cambridge University Press, 1953. 197 р.
7. Monin A.S., Yaglom A.M. Statisticheskaya gidromekhanika. M.: Nauka, 1967. Ч. 2. 720 с.
8. Pope S.B. Turbulent Flows. Cambridge: Cambridge University Press, 2000. 771 p.
9. Obukhov A.M. Pul'satsii davleniya v turbulentnom potoke // Dokl. AN SSSR. 1949. V. 66, N 1. P. 17–20.
10. Batchelor G.K. Pressure fluctuations in isotropic turbulence // Math. Proc. Cambridge Philos. Soc. 1951. V. 47, N 2. P. 359–374. DOI: 10.1017/S0305004100026712.
11. Spiegel E.A., Veronis G. On the Boussinesq approximation for a compressible fluid // Astrophys. J. 1960. V. 131. P. 442–447. DOI: 10.1086/146849.
12. Ogura Y., Phillips N.A. Scale analysis of deep and shallow convection in the atmosphere // J. Atmos. Sci. 1962. V. 192, N 2. P. 173–179. DOI: 10.1175/1520-0469(1962)019<0173:SAODAS>2.0.CO;2.
13. Sreenivasan K.R. The passive scalar spectrum and the Obukhov–Corrsin constant // Phys. Fluid. 1996. V. 8, N 1. P. 189–196. DOI: 10.1063/1.868826.
14. Taylor G.I. The spectrum of turbulence // Proc. Roy. Soc. London. Ser. A. 1938. V. 164. P. 476–490. DOI: 10.1098/rspa.1938.0032.
15. Yushkov V.P. Fluktuatsii davleniya v turbulentnoi atmosfere i ikh rol' v generatsii adiabaticheskikh dvizhenii // Vestn. MGU. Ser. 3. Fiz. Astron. 2020. N 6. P. 34–44. DOI: 10.3103/S0027134920060223.
16. Landau L.D., Lifshits E.M. Teoreticheskaya fizika. V. 6: Gidrodinamika. M.: Nauka, 1986. 737 p.
17. Obukhov A.M. Struktura temperaturnogo polya v turbulentnom potoke // Izv. AN SSSR. Ser. geof. i geogr. 1949. V. 13, N 1. P. 58–69.
18. Corrsin S. The decay of isotropic temperature fluctuations in an isotropic turbulence // J. Aeronaut. Sci. 1951. V. 18, N 6. P. 417–423. DOI: 10.2514/8.1982.
19. Hill R.J. Models of the scalar spectrum for turbulent advection // J. Fluid. Mech. 1978. V. 88, N 3. P. 541–562. DOI: 10.1017/S002211207800227X.
20. Mydlarski L., Warhaft Z. Passive scalar statistics in high-Péclet-number grid turbulence // J. Fluid. Mech. 1998. V. 358. P. 135–175. DOI: 10.1017/S0022112097008161.
21. Hauf T., Finke U., Neisser J., Bull J., Stangenberg J. A ground-based network for atmospheric pressure fluctuations //J. Atmos. Ocean. Technol. 1996. V. 13, N 5. P. 1001–1023. DOI: 10.1175/1520-0426(1996)013<1001:AGBNFA>2.0.CO;2.
22. Lighthill M.J. On sound generated aerodynamically. I. General theory // Proc. Roy. Soc. London. Ser. A. 1952. V. 211, N 1107. P. 564–587. DOI: 10.1098/ rspa.1952.0060.
23. Lighthill M.J. On sound generated aerodynamically II. Turbulence as a source of sound // Proc. Roy. Soc. London. Ser. A. 1954. V. 222, N 1148. P. 1–32. DOI: 10.1098/rspa.1954.0049.
24. Yushkov E.V., Yushkov V.P. Rasseyanie zvuka na turbulentnykh fluktuatsiyakh davleniya i entropii // Vestn. MGU. Ser. 3. Fiz. Astron. 2011. N 6. P. 114–120.
25. Kallistratova M.A. Eksperimental'noe issledovanie rasseyaniya zvuka v turbulentnoi atmosfere // Dokl. AN SSSR. 1959. V. 125. P. 62–72.
26. Willmarth W.W., Wooldridge C.E. Measurements of the fluctuating pressure at the wall beneath a thick turbulent boundary layer // J. Fluid Mech. 1962. V. 14, N 2. P. 187–210. DOI: 10.1017/S0022112062001160.
27. Farabee T.M., Casarella M.J. Spectral features of wall pressure fluctuations beneath turbulent boundary layers // Phys. Fluids A: Fluid Dynamics (1989–1993). 1991. V. 3, N 10. P. 2410–2420. DOI: 10.1063/1.858179.
28. Kaimal J.C., Finnigan J.J. Atmospheric Boundary Layer flows: Their Structure and Measurement. Oxford: Oxford University Press, 1994.
29. Oncley S.P., Friehe C., LaRue J., Businger J., Itsweire E., Chang S.S. Surface-layer fluxes, profiles, and turbulence measurements over uniform terrain under near-neutral conditions // J. Atmos. Sci. 1996. V. 53, N 7. P. 1029–1044. DOI: 10.1175/1520-0469(1996)053<1029:SLFPAT>2.0.CO;2.
30. Larsen S.E., Edson J.B., Fairall C.W., Mestayer P.G. Measurement of temperature spectra by a sonic anemometer // J. Atmos. Ocean. Technol. 1993. V. 10, N 3. P. 345–354. DOI: 10.1175/1520-0426(1993)010<0345:MOTSBA>2.0.CO;2.
31. Kouznetsov R.D., Kallistratova M. Anisotropy of a small-scale turbulence in the atmospheric boundary layer and its effect on acoustic backscattering // Proc. of the 15th International Symposium for the Advancement of Boundary Layer Remote Sensing, 2010 (CD-ROM).
32. Burns S.P., Horst T.W., Jacobsen L., Blanken P.D., Monson R.N. Using sonic anemometer temperature to measure sensible heat flux in strong winds // Atmos. Meas. Tech. 2012. V. 5, N 9. 2095–2111. DOI: 10.5194/amt-5-2095-2012.
33. Neggers R.A.J., Siebesma A.P. The KNMI Parameterization Testbed. User’s Guide. 2010. URL: https://ruisdael-observatory.nl/cesar-database/ (last access: 29.04.2024).
34. Kaimal J.C., Gaynor J.E. The Boulder Atmospheric Observatory // J. Clim. Appl. Meteorol. 1983. V. 22, N 5. P. 863–880.
35. Poulos G.S., Blumen W., Fritts D., Lundquist J., Sun J., Burns S., Nappo C., Banta R., Newsom R., Cuxart J., Terradellas E., Balsley B., Jensen M. CASES-99: A comprehensive investigation of the stable nocturnal boundary layer // Bull. Am. Meteorol. Soc. 2002. V. 83, N 4. P. 555–582. DOI: 10.1175/1520-0477(2002)083<0555:CACIOT>2.3.CO;2.
36. Yushkov V.P. The Hamiltonian formalism and quantum-mechanical analogy in the probabilistic description of turbulence // Moscow University Phys. Bull. 2015. V. 70, N 4. P. 217–225. DOI: 10.3103/S0027134915040153.
37. Forster D., Nelson D.R., Stephen M.J. Large-distance and long-time properties of a randomly stirred fluid // Phys. Rev. A. 1977. V. 16, N 2. P. 732–749. DOI: 10.1103/PhysRevA.16.732.
38. Canet L., Delamotte B., Wschebor N. Fully developed isotropic turbulence: Nonperturbative renormalization group formalism and fixed-point solution // Phys. Rev. E. 2016. V. 93, N 6. P. 063101. DOI: 10.1103/PhysRevE.93.063101.
39. Hasselmann K. Feynman diagrams and interaction rules of wave–wave scattering processes // Rev. Geophys. 1966. V. 4, N 1. P. 1–32. DOI: 10.1029/RG004i001p00001.
40. Zakharov V.E. Gamil'tonovskii formalizm dlya voln v nelineinykh sredakh s dispersiei // Izv. vuzov. Radiofizika. 1974. V. 17, N 4. P. 431–453.