Vol. 37, issue 05, article # 2
Copy the reference to clipboard
Abstract:
The influence of two factors on the contour of an absorption line of water vapor molecule in a mixture with helium, argon, krypton, and xenon is studied: the dependence of the broadening coefficients g and shifting coefficient δ on the velocity va of the absorbing H2O molecule (wind effect) and the change in the velocity of H2O upon collision with these atoms. Three absorption lines of H2O molecule from ν1 + ν2 + ν3 band with different rotational quantum numbers of the initial quantum state were chosen for the study.
Keywords:
line profile, wind effect, Н2О, He, Ar, Kr, Xe
Figures:
References:
1. Starikov V.I., Petrova T.M., Solodov A.M., Solodov A.A., Deichuli V.M. Eksperimental'nyj i teoreticheskij analiz ushireniya linij pogloshcheniya H2O odnoatomnymi gazami v shirokom spektral'nom diapazone // Optika atmosf. i okeana. 2023. V. 36, N 4. P. 262–279; Starikov V.I., Petrova T.M., Solodov A.M., Solodov A.A., Deichuli V.M. Experimental and theoretical analysis of the broadening and shift of H2O absorption lines by monatomic gases in a wide spectral range // Atmos. Ocean. Opt. 2023. V. 36, N 5. P. 433–453. DOI: 10.1134/S1024856023050160.
2. Rautian S.G., Sobel'man I.I. Vliyanie stolknovenij na dopplerovskoe ushirenie spektral'nyh linij // Uspekhi fiz. nauk. 1966. V. 90. P. 209–236.
3. Galatry L. Simultaneous effect of Doppler and foreign gas broadening on spectral lines // Phys. Rev. 1961. V. 122. P. 1218–1223. DOI: 10.1103/PhysRev.122.1218.
4. Claveau C., Henry A., Hurtmans D., Valentin A. Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr, and nitrogen in the spectral range 1850–2140 cm-1 // J. Quant. Spectrosc. Radiat. Transfer. 2001. V. 68. P. 273–298.
5. Buldyreva J., Lavrent’eva N.N., Starikov V.I. Collisional Line Broadening and Shifting of Atmosphyric Gase. A practical Guide for Line Shape Modeling by Current Semi-classical Approaches. London: Imperial College Press, 2010. 292 p.
6. Kochanov V.P. Analytical approximations for speed-dependent spectral line profiles // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 2762–2770. DOI: 10.1016/j.jqsrt.2011.08.006.
7. Starikov V.I. Raschet vliyaniya effekta vetra i izmeneniya skorosti pri stolknovenii na formu kontura linij pogloshcheniya molekuly H2O pri ushirenii odnoatomnymi gazami // Opt. i spektrosk. 2014. V. 116, N 2. P. 18–26. DOI: 10.7868/S0030403414010218.
8. Deichuli V.M., Petrova T.M., Solodov A.M., Solodov A.A., Starikov V.I. Measurements of air-broadening parameters of water vapour transitions in the 5090–7490 cm-1 spectral region // Mol. Phys. 2023. V. 121. P. 15–21. DOI: 10.1080/00268976.2023.2216133.
9. Tran H., Ngo N.H., Hartmann J.-M. Efficient computation of some speed-dependent isolated line profiles // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 129. P. 199–203. DOI: 10.1016/j.jqsrt.2013.06.015.
10. Labani B., Bonamy J., Robert D., Hartmann J.-M., Taine J. Collisional broadening of rotation-vibration lines for asymmetric top molecules. I. Theoretical model for both distant and close collisions // J. Chem. Phys. 1986. V. 84. P. 4256–4267.
11. Petrova T.M., Solodov A.M., Starikov V.I., Solodov A.A. Measurements and calculations of He-broadening and -shifting parameters of the water vapor transitions of the ν1 + ν2 + ν3 band // Mol. Phys. 2012. V. 110. P. 1493–03. DOI: 10.1080/00268976.2012.663939.
12. Petrova T.M., Solodov A.M., Solodov A.A., Starikov V.I. Measurements and calculations of Ar-broadening and -shifting parameters of the water vapor transitions of the ν1 + ν2 + ν3 band // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 148. P. 116–126. DOI: 10.1016/j.jms.2019.111209.
13. Petrova T.M., Solodov A.M., Solodov A.A., Deichuli V.M., Starikov V.I. Measurements and calculations of krypton broadening and shifting parameters of the ν1 + ν2 + ν3 band of H2O // J. Mol. Spectrosc. 2019. V. 365. P. 111209.
14. Petrova T.M., Solodov A.M., Solodov A.A., Deichuli V.M., Starikov V.I. Measurements and calculations of xenon broadening and shifting parameters of the ν1 + ν2 + ν3 band of H2O // J. Mol. Spectrosc. 2021. V. 382. P. 111546. DOI: 10.1016/j.jms.2021.111546.
15. Robert D., Bonamy J. Short range force effects in semiclassical molecular line broadening calculations // J. Phys. (Paris). 1979. V. 40. P. 923–943. DOI: 10.1051/jphys:019790040010092300.
16. Keilson J., Störer J.E. On Brownian motion, Boltzmann’s equation, and the Fokker–Planck equation // Quart. Appl. Math. 1952. V. 10. P. 243–253. DOI: 10.1090/qam/50216.
17. Grossmann B.E., Browell E.V. Water vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region // J. Mol. Spectrosc. 1989. V. 138. P. 562–595. DOI: 10/1016/0022-2852(89)90019-2.
18. Grossmann B.E., Browell E.V. Line-shape asymmetry of water vapor absorption lines in the 720-nm wavelength region // J. Quant. Spectrosc. Radiat. Transfer. 1991. V. 45. P. 339–348. DOI: 10.1016/0022-4073(91)90069-3.