Том 37, номер 05, статья № 2

Стариков В. И., Петрова Т. М., Солодов А. М., Солодов А. А., Дейчули В. М. Влияние эффекта ветра и изменения скорости молекулы Н2О при столкновении с атомами буферных газов на форму контура линий поглощения молекулы. // Оптика атмосферы и океана. 2024. Т. 37. № 05. С. 363–369. DOI: 10.15372/AOO20240502.
Скопировать ссылку в буфер обмена

Аннотация:

Исследовано влияние двух факторов на контур линии поглощения молекулы водяного пара в смеси с гелием, аргоном, криптоном и ксеноном: зависимости коэффициентов уширения g и сдвига центра линии δ от скорости va поглощающей молекулы Н2О (эффект ветра) и изменения скорости Н2О при столкновении с указанными атомами. Для исследования выбраны три линии поглощения молекулы Н2О из полосы ν+ ν+ ν3 с различными вращательными квантовыми числами начального квантового состояния. Показано, что наиболее сильно эффект ветра проявляется при взаимодействии молекулы Н2О с атомами аргона, криптона и ксенона. Результаты работы могут быть использованы при анализе спектров поглощения водяного пара в смеси с одноатомными газами.

Ключевые слова:

контур линии, эффект ветра, Н2О, He, Ar, Kr, Xe

Иллюстрации:

Список литературы:

1. Стариков В.И., Петрова Т.М., Солодов А.М., Солодов А.А., Дейчули В.М. Экспериментальный и теоретический анализ уширения линий поглощения Н2О одноатомными газами в широком спектральном диапазоне // Оптика атмосф. и океана. 2023. Т. 36, № 4. С. 262–279; Starikov V.I., Petrova T.M., Solodov A.M., Solodov A.A., Deichuli V.M. Experimental and theoretical analysis of the broadening and shift of H2O absorption lines by monatomic gases in a wide spectral range // Atmos. Ocean. Opt. 2023. V. 36, N 5. P. 433–453. DOI: 10.1134/S1024856023050160.
2. Раутиан С.Г., Собельман И.И. Влияние столкновений на допплеровское уширение спектральных линий // Успехи физ. наук. 1966. Т. 90. С. 209–236.
3. Galatry L. Simultaneous effect of Doppler and foreign gas broadening on spectral lines // Phys. Rev. 1961. V. 122. P. 1218–1223. DOI: 10.1103/PhysRev.122.1218.
4. Claveau C., Henry A., Hurtmans D., Valentin A. Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr, and nitrogen in the spectral range 1850–2140 cm-1 // J. Quant. Spectrosc. Radiat. Transfer. 2001. V. 68. P. 273–298.
5. Buldyreva J., Lavrent’eva N.N., Starikov V.I. Collisional Line Broadening and Shifting of Atmosphyric Gase. A practical Guide for Line Shape Modeling by Current Semi-classical Approaches. London: Imperial College Press, 2010. 292 p.
6. Kochanov V.P. Analytical approximations for speed-dependent spectral line profiles // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 2762–2770. DOI: 10.1016/j.jqsrt.2011.08.006.
7. Стариков В.И. Расчет влияния эффекта ветра и изменения скорости при столкновении на форму контура линий поглощения молекулы Н2О при уширении одноатомными газами // Опт. и спектроск. 2014. Т. 116, № 2. С. 18–26. DOI: 10.7868/S0030403414010218.
8. Deichuli V.M., Petrova T.M., Solodov A.M., Solodov A.A., Starikov V.I. Measurements of air-broadening parameters of water vapour transitions in the 5090–7490 cm-1 spectral region // Mol. Phys. 2023. V. 121. P. 15–21. DOI: 10.1080/00268976.2023.2216133.
9. Tran H., Ngo N.H., Hartmann J.-M. Efficient computation of some speed-dependent isolated line profiles // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 129. P. 199–203. DOI: 10.1016/j.jqsrt.2013.06.015.
10. Labani B., Bonamy J., Robert D., Hartmann J.-M., Taine J. Collisional broadening of rotation-vibration lines for asymmetric top molecules. I. Theoretical model for both distant and close collisions // J. Chem. Phys. 1986. V. 84. P. 4256–4267.
11. Petrova T.M., Solodov A.M., Starikov V.I., Solodov A.A. Measurements and calculations of He-broadening and -shifting parameters of the water vapor transitions of the ν1 + ν2 + ν3 band // Mol. Phys. 2012. V. 110. P. 1493–03. DOI: 10.1080/00268976.2012.663939.
12. Petrova T.M., Solodov A.M., Solodov A.A., Starikov V.I. Measurements and calculations of Ar-broadening and -shifting parameters of the water vapor transitions of the ν1 + ν2 + ν3 band // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 148. P. 116–126. DOI: 10.1016/j.jms.2019.111209.
13. Petrova T.M., Solodov A.M., Solodov A.A., Deichuli V.M., Starikov V.I. Measurements and calculations of krypton broadening and shifting parameters of the ν1 + ν2 + ν3 band of H2O // J. Mol. Spectrosc. 2019. V. 365. P. 111209.
14. Petrova T.M., Solodov A.M., Solodov A.A., Deichuli V.M., Starikov V.I. Measurements and calculations of xenon broadening and shifting parameters of the ν1 + ν2 + ν3 band of H2O // J. Mol. Spectrosc. 2021. V. 382. P. 111546. DOI: 10.1016/j.jms.2021.111546.
15. Robert D., Bonamy J. Short range force effects in semiclassical molecular line broadening calculations // J. Phys. (Paris). 1979. V. 40. P. 923–943. DOI: 10.1051/jphys:019790040010092300.
16. Keilson J., Störer J.E. On Brownian motion, Boltzmann’s equation, and the Fokker–Planck equation // Quart. Appl. Math. 1952. V. 10. P. 243–253. DOI: 10.1090/qam/50216.
17. Grossmann B.E., Browell E.V. Water vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region // J. Mol. Spectrosc. 1989. V. 138. P. 562–595. DOI: 10/1016/0022-2852(89)90019-2.
18. Grossmann B.E., Browell E.V. Line-shape asymmetry of water vapor absorption lines in the 720-nm wavelength region // J. Quant. Spectrosc. Radiat. Transfer. 1991. V. 45. P. 339–348. DOI: 10.1016/0022-4073(91)90069-3