Vol. 36, issue 12, article # 3

Еrmakov A. N., Aloyan A. E., Arutyunyan V. O., Pronchev G. B. A new source of sulfates in the atmosphere. // Optika Atmosfery i Okeana. 2023. V. 36. No. 12. P. 975–981. DOI: 10.15372/AOO20231203 [in Russian].
Copy the reference to clipboard


Monitoring data on sulfates in atmospheric haze particles over Beijing in winter 2016 are considered. It has been established that the source of sulfates in humidified haze particles is the catalytic oxidation of sulfur dioxide (SOMn/Fe,O2→SO2–4) proceeding in a branched mode. Concentration conditions of this process and the features of its dynamics in the atmosphere are discussed. The agreement between the calculated content of  in particles and monitoring data indicates a branched mode of catalytic conversion of SO2 in the atmosphere – a new source of sulfates. This fast non-photochemical channel should be taken into account in inventory system of sulfate sources in the global atmosphere.


aerosol haze, sulfur dioxide, catalysis, Fe/Mn ions, branched mode


1. Andreae M.O., Jones C.D., Cox P.M. Strong present-day cooling implies a hot future // Nature. 2005. V. 435, N 7046. P. 1187–1190.
2. Kulmala M., Pirjola U., Mäkelä U. Stable sulphate clusters as a source of new atmospheric particles // Nature. 2000. V. 404, N 6773. P. 66–69.
3. Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics, from Air Pollution to Climate Change. Hoboken, New Jersey, USA: John Wiley & Sons, 2016. 1152 p.
4. Firket J. Fog along the Meuse valley // Trans. Farad. Soc. 1936. V. 32. P. 1192–1196.
5. Bell M.L., Davis D.L. Reassessment of the lethal London fog of 1952: Novel indicators of acute and chronic consequences of acute exposure to air pollution // Environ. Health Perspect. 2001. V. 109, N 3. P. 389–394.
6. Ball R.J., Robinson G.D. The origin of haze in the central United States and its effect on solar radiation // J. Appl. Meteorol. 1982. V. 21, N 2. P. 171–188.
7. Kim H., Zhang Q., Sun Y. Measurement report: Characterization of severe spring haze episodes and influences of long-range transport in the Seoul metropolitan area in March 2019 // Atmos. Chem. Phys. 2020. V. 20, N 19. P. 11527–11550.
8. Sirois A., Barrie L.A. Arctic lower tropospheric aerosol trends and composition at Alert, Canada: 1980–1995 // J. Geophys. Res. 1999. V. 104, N D9. P. 11599–11618.
9. Barrie L.A., Hoff R.M. The oxidation rate and residence time of sulphur dioxide in the Arctic atmosphere // Atmos. Environ. 1984. V. 18, N 12. P. 2711–2722.
10. Wang G.H., Zhang R.Y., Gomes M.E., Song Y., Zhou L., Cao J., Hu J., Tang G., Chen Zh., Li Z., Hu Z., Peng C., Lian C., Chen Y., Pan Y., Zhang Y., Sun Y., Li W., Zhu T., Tian H., Ge M. Persistent sulfate formation from London Fog to Chinese haze // Proc. Natl. Acad. Sci. U.S.A. 2016. V. 113, N 48. P. 13630–13635.
11. Liu T., Clegg S.L., Abbatt J.P.D. Fast oxidation of sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles // Proc. Natl. Acad. Sci. U.S.A. 2020. V. 117, N 3. P. 1354–1359.
12. Zhang H., Xu Y., Jia L. A chamber study of catalytic oxidation of SO2 by Mn2+/Fe3+ in aerosol water // Atmos. Environ. 2021. V. 245. P. 118019.
13. Warneck P., Mirabel P., Salmon G.A., van Eldik R., Winckier C., Wannowious K.J., Zetzsch C. Review of the activities and achievements of the EUROTRAC subproject HALIPP // Heterogeneous and Liquid Phase Processes. Berlin, Heidelberg: Springer, 1996. P. 7–74.
14. Liu P., Ye C., Xue Ch,, Zhang Ch., Mu Yu., Sun X. Formation mechanisms of atmospheric nitrate and sulfate during the winter haze pollution periods in Beijing: Gas-phase, heterogeneous and aqueous-phase chemistry // Atmos. Chem. Phys. 2020. V. 20, N 7. P. 4153–4165.
15. Zheng G.J., Duan F.K., Su H., Ma J.L., Zheng Y., Zheng B., Czhang Q., Huang T., Kimoto T., Chang D., Pőschl U., Cheng Y.F., He K.B. Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions // Atmos. Chem. Phys. 2015. V. 15, N 6. P. 2969–2983.
16. Berglund J., Fronaeus S., Elding L.I. Kinetics and mechanism for manganese-catalyzed oxidation of sulfur(IV) by oxygen in aqueous solution // Inorg. Chem. 1993. V. 32, N 21. P. 4527–4537.
17. Coughanowr D.R., Krause F.E. The reaction of SO2 and O2 in aqueous solutions of MnSO4 // Ind. Eng. Chem. Fund. 1965. V. 4, N 1. P. 61–66.
18. Grgić I., Hudnik V., Bizjak M., Levec J. Aqueous S(IV) oxidation – I. Catalytic effects of some metal ions // Atmos. Environ. 1991. V. 25A, N 8. P. 1591–1597.
19. Ibusuki T., Takeuchi K. Sulfur dioxide oxidation by oxygen catalyzed by mixtures of manganese (II) and iron(III) in aqueous solutions at environmental reaction conditions // Atmos. Environ. 1987. V. 21, N 7. P. 1555–1560.
20. Feichter J., Kjellstrom E., Rodhe H., Dentener F., Lelieveld J., Roelofs G.-J. Simulation of the tropospheric sulfur cycle in a global climate model // Atmos. Environ. 1996. V. 30, N 10–11. P. 1693–1707.
21. Alexander B., Park R.J., Jacob D.J., Gong S. Transition metal-catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur budget // J. Geophys. Res.: Atmos. 2009. V. 114. P. D02309.
22. Harris E., Sinha B, van Pinxteren D., Tilgner A., Wadinga Fomba K., Schneider J., Roth A., Gnauk T., Fahlbusch B., Mertes S., Lee T., Collett J., Foley S., Borrmann S., Hoppe P., Herrmann H. Enhanced role of transition metal ion catalysis during in-cloud oxidation of SO2 // Science. 2013. V. 340, N 6133. P. 727–730.
23. Ermakov A.N., Purmal A.P. Catalysis of HSO3/SO2–3 oxidation by manganese ions // Kinetic. Catal. 2002. V. 43, N 2. P. 249–260.
24. Yermakov A.N. On the influence of ionic strength on the kinetics of sulfite oxidation in the presence of Mn(II) // Kinetic. Catal. 2022. V. 63, N 2. P. 157–165.
25. Yermakov A.N., Aloyan A.E., Arutyunyan V.O. Dinamika obrazovaniya sul'fatov v atmosfernoj dymke // Optika atmosf. i okeana. 2023. V. 36, N 2. P. 148–153; Yermakov A.N., Aloyan A.E., Arutyunyan V.O. Dynamics of sulfate formation in atmospheric haze // Atmos. Ocean. Opt. 2023. V. 36, N 4. P. 394–399.
26. Yermakov A.N. On a new mode of catalytic sulfite oxidation in the presence of Mn(II) and excess metal ions // Kinetic. Catal. 2023. V. 64, N 1. P. 74–84.
27. Mc-Cabe J.R., Savarino J., Alexander B., Gong S., Thiemens M.H. Isotopic constraints on non-photoche­mical sulfate production in the Arctic winter // Geophys. Res. Lett. 2006. V. 33, N 5. P. L05810.
28. Behra P., Sigg L. Evidence for redox cycling of iron in atmospheric water droplets // Nature. 1990. V. 344, N 6265. P. 419–421.
29. Laj P., Fuzzi S., Facchini M.C., Lind J.A., Orsi G., Preiss M., Maser R., Jaeschke W., Seyffer E., Helas G., Acker K., Wieprecht W., Möller D., Arends B.G., Möls J.J., Colvile R.N., Gallagher M.W., Beswick K.M., Hargreaves K.J., Stroreton-West R.L., Sutton M.A. Cloud processing of soluble gases // Atmos. Environ. 1997. V. 31, N 16. P. 2589–2598.
30. Sedlak D.L. Hoigne J., David M.M., Colvile R.N., Seyffer E., Acker K., Wiepercht T.W., Lindii J.A., Fuzz S. The cloudwater chemistry of iron and copper at Great Dun Fell, U.K // Atmos. Environ. 1997. V. 31, N 16. P. 2515–2526.
31. Liu M., Song Y., Zhou T., Xu Z., Caiqing Y., Zheng M., Wu Z., Hu M., Wu Y., Zhu T. Fine particle pH during severe haze episodes in northern China // Geophys. Res. Lett. 2017. V. 44, N 10. P. 5213–5221.
32. Fountoukis C., Nenes A. ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4+–Na+–SO42––NO3–Cl-–H2O aerosols // Atmos. Chem. Phys. 2007. V. 7, N 17. P. 4639–4659.
33. Clegg S.L., Brimblecombe P., Wexler A.S. Thermodynamic model of the system H+–NH4+– SO2–4–NO3–H2O at tropospheric temperatures // Chem. Eur. J. 1998. V. 102, N 12. P. 2137–2154.
34. Berresheim H., Jaeschke W. Study of metal aerosol systems as a sink for atmospheric SO2 // J. Atmos. Chem. 1986. V. 4, N 3. P. 311.
35. Barrie L.A., Georgii H.W. An experimental investigation of the absorption of sulphur dioxide by water drops containing heavy metal ions // Atmos. Environ. 1976. V. 10, N 9. P. 743–749.
36. Kaplan D.J Himmelblau D.M., Kanaoka C. Oxidation of sulfur dioxide in aqueous ammonium sulfate aerosols containing manganese as a catalyst // Atmos. Environ. 1981. V. 15, N 5. P. 763–773.
37. Millero F.J., Hershey J.B., Johnson G., Zhang J.-Z. The solubility of SO2 and the 266 dissociation of H2SO3 in NaCl solutions // J. Atmos. Chem. 1989. V. 8, N 4. P. 377.
38. Herrmann H., Ervens B., Jacobi H.-W., Wolke R., Nowacki P., Zellner R.J. CAPRAM 2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry // J. Atmos. Chem. 2000. V. 36, N 3. P. 231–284.
39. Van Eldik R., Coichev N., Reddy K.B., Gerhard A. Metal ion catalyzed autoxidation of sulfur(IV)-Oxides: Redox cycling of metal ions induced by sulfite // Berichte der Bunsengesellschaft für physikalische Chemie. 1992. V. 96, N 3. P. 478–481.
40. Beilke S., Gravenhorst G. Heterogeneous SO2 oxidation in the droplet phase // Atmos. Environ. 1978. V. 12, N 7. P. 231–240.
41. Hegg D.A., Hobbs P.V. Oxidation of sulfur dioxide in aqueous systems with particular reference to the atmosphere // Atmos. Environ. 1978. V. 12. P. 241–253.
42. Schwartz S.E., Freiberg J.E. Mass-transport limitations to the rate of reaction of gases in liquid droplets: Application to oxidation of SO2 in aqueous solutions // Atmos. Environ. A. 1981. V. 15, N 7. P. 1129–1144.
43. Jacob D.J. Chemistry of OH in remote clouds ant its role in the production of formic acid and peroxymonosulfate // J. Geophys. Res. 1986. V. 91, N D9. P. 9807–9826.
44. Cheng Y., Zheng G., Wei C., Mu Q., Zheng B., Wang Z., Gao M., Zhang Q., He K., Carmichael G., Pöschl U., Su H. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China // Sci. Adv. 2016. V. 2. P. e1601530.