Том 36, номер 12, статья № 3
Скопировать ссылку в буфер обмена
Аннотация:
Рассматриваются данные мониторинга сульфатов в частицах атмосферной дымки над Пекином зимой 2016 г. Установлено, что источником сульфатов в увлажненных частицах дымки служит каталитическое окисление диоксида серы молекулярным кислородом с участием ионов переходных металлов, SO2 (газ) Mn/Fe,O2→SO2–4(aq), которое осуществляется в разветвленном режиме. Обсуждаются концентрационные условия этого процесса и особенности его динамики в атмосфере. Выявленное в работе согласие результатов расчетов содержания SO2–4(aq) в частицах с данными мониторинга указывает на существование разветвленного режима каталитической конверсии SO2 (газ) в атмосфере – нового источника сульфатов. Этот быстрый нефотохимический канал следует учитывать при инвентаризации источников сульфатов в глобальной атмосфере.
Ключевые слова:
аэрозольная дымка, диоксид серы, катализ, разветвленный режим, ионы переходных металлов
Список литературы:
1. Andreae M.O., Jones C.D., Cox P.M. Strong present-day cooling implies a hot future // Nature. 2005. V. 435, N 7046. P. 1187–1190.
2. Kulmala M., Pirjola U., Mäkelä U. Stable sulphate clusters as a source of new atmospheric particles // Nature. 2000. V. 404, N 6773. P. 66–69.
3. Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics, from Air Pollution to Climate Change. Hoboken, New Jersey, USA: John Wiley & Sons, 2016. 1152 p.
4. Firket J. Fog along the Meuse valley // Trans. Farad. Soc. 1936. V. 32. P. 1192–1196.
5. Bell M.L., Davis D.L. Reassessment of the lethal London fog of 1952: Novel indicators of acute and chronic consequences of acute exposure to air pollution // Environ. Health Perspect. 2001. V. 109, N 3. P. 389–394.
6. Ball R.J., Robinson G.D. The origin of haze in the central United States and its effect on solar radiation // J. Appl. Meteorol. 1982. V. 21, N 2. P. 171–188.
7. Kim H., Zhang Q., Sun Y. Measurement report: Characterization of severe spring haze episodes and influences of long-range transport in the Seoul metropolitan area in March 2019 // Atmos. Chem. Phys. 2020. V. 20, N 19. P. 11527–11550.
8. Sirois A., Barrie L.A. Arctic lower tropospheric aerosol trends and composition at Alert, Canada: 1980–1995 // J. Geophys. Res. 1999. V. 104, N D9. P. 11599–11618.
9. Barrie L.A., Hoff R.M. The oxidation rate and residence time of sulphur dioxide in the Arctic atmosphere // Atmos. Environ. 1984. V. 18, N 12. P. 2711–2722.
10. Wang G.H., Zhang R.Y., Gomes M.E., Song Y., Zhou L., Cao J., Hu J., Tang G., Chen Zh., Li Z., Hu Z., Peng C., Lian C., Chen Y., Pan Y., Zhang Y., Sun Y., Li W., Zhu T., Tian H., Ge M. Persistent sulfate formation from London fog to Chinese haze // Proc. Natl. Acad. Sci. U.S.A. 2016. V. 113, N 48. P. 13630–13635.
11. Liu T., Clegg S.L., Abbatt J.P.D. Fast oxidation of sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles // Proc. Natl. Acad. Sci. U.S.A. 2020. V. 117, N 3. P. 1354–1359.
12. Zhang H., Xu Y., Jia L. A chamber study of catalytic oxidation of SO2 by Mn2+/Fe3+ in aerosol water // Atmos. Environ. 2021. V. 245. P. 118019.
13. Warneck P., Mirabel P., Salmon G.A., van Eldik R., Winckier C., Wannowious K.J., Zetzsch C. Review of the activities and achievements of the EUROTRAC subproject HALIPP // Heterogeneous and Liquid Phase Processes. Berlin, Heidelberg: Springer, 1996. P. 7–74.
14. Liu P., Ye C., Xue Ch,, Zhang Ch., Mu Yu., Sun X. Formation mechanisms of atmospheric nitrate and sulfate during the winter haze pollution periods in Beijing: Gas-phase, heterogeneous and aqueous-phase chemistry // Atmos. Chem. Phys. 2020. V. 20, N 7. P. 4153–4165.
15. Zheng G.J., Duan F.K., Su H., Ma J.L., Zheng Y., Zheng B., Czhang Q., Huang T., Kimoto T., Chang D., Pőschl U., Cheng Y.F., He K.B. Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions // Atmos. Chem. Phys. 2015. V. 15, N 6. P. 2969–2983.
16. Berglund J., Fronaeus S., Elding L.I. Kinetics and mechanism for manganese-catalyzed oxidation of sulfur(IV) by oxygen in aqueous solution // Inorg. Chem. 1993. V. 32, N 21. P. 4527–4537.
17. Coughanowr D.R., Krause F.E. The reaction of SO2 and O2 in aqueous solutions of MnSO4 // Ind. Eng. Chem. Fund. 1965. V. 4, N 1. P. 61–66.
18. Grgić I., Hudnik V., Bizjak M., Levec J. Aqueous S(IV) oxidation – I. Catalytic effects of some metal ions // Atmos. Environ. 1991. V. 25A, N 8. P. 1591–1597.
19. Ibusuki T., Takeuchi K. Sulfur dioxide oxidation by oxygen catalyzed by mixtures of manganese (II) and iron(III) in aqueous solutions at environmental reaction conditions // Atmos. Environ. 1987. V. 21, N 7. P. 1555–1560.
20. Feichter J., Kjellstrom E., Rodhe H., Dentener F., Lelieveld J., Roelofs G.-J. Simulation of the tropospheric sulfur cycle in a global climate model // Atmos. Environ. 1996. V. 30, N 10–11. P. 1693–1707.
21. Alexander B., Park R.J., Jacob D.J., Gong S. Transition metal-catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur budget // J. Geophys. Res.: Atmos. 2009. V. 114. P. D02309.
22. Harris E., Sinha B, van Pinxteren D., Tilgner A., Wadinga Fomba K., Schneider J., Roth A., Gnauk T., Fahlbusch B., Mertes S., Lee T., Collett J., Foley S., Borrmann S., Hoppe P., Herrmann H. Enhanced role of transition metal ion catalysis during in-cloud oxidation of SO2 // Science. 2013. V. 340, N 6133. P. 727–730.
23. Ermakov A.N., Purmal A.P. Catalysis of HSO–3/SO2–3 oxidation by manganese ions // Kinetic. Catal. 2002. V. 43, N 2. P. 249–260.
24. Yermakov A.N. On the influence of ionic strength on the kinetics of sulfite oxidation in the presence of Mn(II) // Kinetic. Catal. 2022. V. 63, N 2. P. 157–165.
25. Ермаков А.Н., Алоян А.Е., Арутюнян В.О. Динамика образования сульфатов в атмосферной дымке // Оптика атмосф. и океана. 2023. Т. 36, № 2. С. 148–153; Yermakov A.N., Aloyan A.E., Arutyunyan V.O. Dynamics of sulfate formation in atmospheric haze // Atmos. Ocean. Opt. 2023. V. 36, N 4. P. 394–399.
26. Yermakov A.N. On a new mode of catalytic sulfite oxidation in the presence of Mn(II) and excess metal ions // Kinetic. Catal. 2023. V. 64, N 1. P. 74–84.
27. Mc-Cabe J.R., Savarino J., Alexander B., Gong S., Thiemens M.H. Isotopic constraints on non-photochemical sulfate production in the Arctic winter // Geophys. Res. Lett. 2006. V. 33, N 5. P. L05810.
28. Behra P., Sigg L. Evidence for redox cycling of iron in atmospheric water droplets // Nature. 1990. V. 344, N 6265. P. 419–421.
29. Laj P., Fuzzi S., Facchini M.C., Lind J.A., Orsi G., Preiss M., Maser R., Jaeschke W., Seyffer E., Helas G., Acker K., Wieprecht W., Möller D., Arends B.G., Möls J.J., Colvile R.N., Gallagher M.W., Beswick K.M., Hargreaves K.J., Stroreton-West R.L., Sutton M.A. Cloud processing of soluble gases // Atmos. Environ. 1997. V. 31, N 16. P. 2589–2598.
30. Sedlak D.L. Hoigne J., David M.M., Colvile R.N., Seyffer E., Acker K., Wiepercht T.W., Lindii J.A., Fuzz S. The cloudwater chemistry of iron and copper at Great Dun Fell, U.K // Atmos. Environ. 1997. V. 31, N 16. P. 2515–2526.
31. Liu M., Song Y., Zhou T., Xu Z., Caiqing Y., Zheng M., Wu Z., Hu M., Wu Y., Zhu T. Fine particle pH during severe haze episodes in northern China // Geophys. Res. Lett. 2017. V. 44, N 10. P. 5213–5221.
32. Fountoukis C., Nenes A. ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+ – Ca2+ – Mg2+ – NH4+ – Na+ – SO42– – NO3 – Cl- – H2O aerosols // Atmos. Chem. Phys. 2007. V. 7, N 17. P. 4639–4659.
33. Clegg S.L., Brimblecombe P., Wexler A.S. Thermodynamic model of the system H+–NH4+– SO2–4–NO–3–H2O at tropospheric temperatures // Chem. Eur. J. 1998. V. 102, N 12. P. 2137–2154.
34. Berresheim H., Jaeschke W. Study of metal aerosol systems as a sink for atmospheric SO2 // J. Atmos. Chem. 1986. V. 4, N 3. P. 311.
35. Barrie L.A., Georgii H.W. An experimental investigation of the absorption of sulphur dioxide by water drops containing heavy metal ions // Atmos. Environ. 1976. V. 10, N 9. P. 743–749.
36. Kaplan D.J Himmelblau D.M., Kanaoka C. Oxidation of sulfur dioxide in aqueous ammonium sulfate aerosols containing manganese as a catalyst // Atmos. Environ. 1981. V. 15, N 5. P. 763–773.
37. Millero F.J., Hershey J.B., Johnson G., Zhang J.-Z. The solubility of SO2 and the 266 dissociation of H2SO3 in NaCl solutions // J. Atmos. Chem. 1989. V. 8, N 4. P. 377.
38. Herrmann H., Ervens B., Jacobi H.-W., Wolke R., Nowacki P., Zellner R.J. CAPRAM 2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry // J. Atmos. Chem. 2000. V. 36, N 3. P. 231–284.
39. Van Eldik R., Coichev N., Reddy K.B., Gerhard A. Metal ion catalyzed autoxidation of sulfur(IV)-Oxides: Redox cycling of metal ions induced by sulfite // Berichte der Bunsengesellschaft für physikalische Chemie. 1992. V. 96, N 3. P. 478–481.
40. Beilke S., Gravenhorst G. Heterogeneous SO2 oxidation in the droplet phase // Atmos. Environ. 1978. V. 12, N 7. P. 231–240.
41. Hegg D.A., Hobbs P.V. Oxidation of sulfur dioxide in aqueous systems with particular reference to the atmosphere // Atmos. Environ. 1978. V. 12. P. 241–253.
42. Schwartz S.E., Freiberg J.E. Mass-transport limitations to the rate of reaction of gases in liquid droplets: Application to oxidation of SO2 in aqueous solutions // Atmos. Environ. A. 1981. V. 15, N 7. P. 1129–1144.
43. Jacob D.J. Chemistry of OH in remote clouds ant its role in the production of formic acid and peroxymonosulfate // J. Geophys. Res. 1986. V. 91, N D9. P. 9807–9826.
44. Cheng Y., Zheng G., Wei C., Mu Q., Zheng B., Wang Z., Gao M., Zhang Q., He K., Carmichael G., Pöschl U., Su H. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China // Sci. Adv. 2016. V. 2. P. e1601530.