Vol. 36, issue 08, article # 10

Marakasov D. A., Sukharev A. A., Tsvyk R. Sh. Study of the structure of underexpanded turbulent supersonic jets by the laser transillumination method. // Optika Atmosfery i Okeana. 2023. V. 36. No. 08. P. 694–701. DOI: 10.15372/AOO20230810 [in Russian].
Copy the reference to clipboard

Abstract:

The spatial distribution of the average air density in a supersonic jet is analyzed based on the results of laser transillumination. The algorithm for retrieving the average density from deviations of the translucent wave front transverse with respect to the jet axis was tested in experiments at the Vertical Jet Setup of ITAM SB RAS. The retrieval results are compared with the data of contact measurements known from the literature and with the results of numerical simulation. A good sensitivity of local wavefront slopes to fluctuations in air density at frequencies of discrete acoustic tones is show, which opens up possibilities for experimental study of their spatial structure inside the jet channel.

Keywords:

supersonic jet, laser transillumination, wavefront distortion, air density, retrieval

References:

1. Chow W.L., Chang I.S. Mach reflection from overexpanded nozzle flows // AIAA J. 1972. V. 10. P. 1261–1263.
2. Troutt T.R., McLaughlin D.K. Experiments on the flow and acoustic properties of a moderate-Reynolds number supersonic jet // J. Fluid. Mech. 1982. V. 116. P. 123–156.
3. Gutmark E., Wygnanski I. The planar turbulent jet // J. Fluid. Mech. 1976. V. 73. P. 465–495.
4. Courant R., Friedrichs K.O. Supersonic Flow and Shock Waves. New York: Springer, 1976. V. XVI. 464 p.
5. Shulutko A.M., Osmanov E.G., Semikov V.I., Macharadze A.D. Plazmennaya khirurgicheskaya tekhnologiya – ot istokov do nashikh dnei // Rossiiskii meditsinskii zhurn. 2018. V. 24. P. 199–205.
6. Urzay J. Supersonic Combustion in Air-Breathing Propulsion Systems for Hypersonic Flight // Ann. Rev. Fluid. Mech. 2018. V. 50. P. 593–627.
7. Kim K.S., Kim T.H. Nanofabrication by thermal plasma jets: From nanoparticles to low-dimensional nanomaterials // J. Appl. Phys. 2019. V. 125. P. 070901-1–070901-26.
8. Boiko V.M., Dostovalov A.V., Zapryagaev V.I., Kavun I.N., Kiselev N.P., Pivovarov A.A. Issledovanie struktury sverkhzvukovykh neizobaricheskikh strui // Uch. zap. TsAGI. 2010. V. 41. P. 44–57.
9. Aniskin V.M., Korotaeva T.A., Obodovskaya E.A., Turchinovich A.O. Chislennoe modelirovanie nedorasshirennykh osesimmetrichnykh mikrostrui, istekayushchikh v zatoplennoe prostranstvo // Dokl. AN VSh RF. 2018. V. 38. P. 22–35.
10. Chin C., Li M., Harkin C., Rochwerger T., Chan L., Ooi A., Risborg A., Soria J. Investigation of the flow structures in supersonic free and impinging jet flows // J. Fluid. Eng. 2013. V. 135. P. 031202-1–031202-12.
11. Murugesan P., Arjun B., Akhil T.K., Shashank P., Girish C.C., Srikrishnan A.R., Ratna K.V. Numerical study of characteristics of underexpanded supersonic jet // J. Aerosp. Technol. Manag. 2020. V. 12. P. e4220-1–e4220-8.
12. Foss J.F., Foss J.K., Spalart P.R. Numerical and experimental evaluations of the flow past nested chevrons // AIAA J. 1989. V. 27. P. 675–676.
13. Otobe Y., Kashimura H., Matsuo S., Setoguchi T., Kim H.-D. Influence of nozzle geometry on the near-field structure of a highly underexpanded sonic jet // J. Fluid. Struct. 2008. V. 24. P. 281–293.
14. Zapryagaev V.I., Solotchin A.V., Kiselev N.P. Issledovanie struktury sverkhzvukovoi strui pri izmenenii geometrii vkhodnogo uchastka sopla // PMTF. 2002. V. 43. P. 58–64.
15. Raman G. Supersonic jet screech: Half-century from Powell to the present // J. Sound. Vib. 1999. V. 225. P. 543–571.
16. Tam C.K.W., Tanna H.K. Shock associated noise of supersonic jets from convergent-divergent nozzles // J. Sound. Vib. 1982. V. 81. P. 337–358.
17. Tam C.K.W. Supersonic jet noise // Ann. Rev. Fluid. Mech. 1995. V. 27. P. 17–43.
18. Tolstykh A.I., Shirobokov D.A. Fast calculations of screech using highly accurate multiprocessor-based schemes // Appl. Acoustics. 2013. V. 74. P. 102–109.
19. Marakasov D.A., Sazanovich V.M., Tsvyk R.SH., Shesternin A.N., Gubanov D.A. Issledovaniya akusticheskogo polya, generiruemogo sverkhzvukovoi struei // Optika atmosf. i okeana. 2019. V. 32, N 4. P. 296–303.
20. Okhotsimskii A., Hozawa M. Schlieren visualization of natural convection in binary gas–liquid systems // Chem. Engin. Sci. 1998. V. 53, N 14. P. 2547–2573.
21. Settles G.S. Schlieren und Shadowgraph Techniques: Visualizing Phenomena in Transparent Media. Berlin, Heidelberg: Springer-Verlag, 2001. V. XVIII. 376 p.
22. Meier G.E.A. Computerized background-oriented schlieren // Experiments in Fluids. 2002. V. 33. P. 181–187.
23. Hargather M.J., Settles G.S. Natural-background-oriented schlieren imaging // Exp. Fluids. 2010. V. 48. P. 59–68.
24. Bazylev N.B., Fomin N.A. Kolichestvennaya vizualizatsiya techenii, osnovannaya na spekl-tekhnologiyakh. Minsk: Belaruskaya navuka, 2016. 392 p.
25. Banakh V.A., Marakasov D.A., Tsvyk R.Sh., Zapryagaev V.I. Study of turbulent supersonic flow based on the optical and acoustic measurements // Wind Tunnels and Experimental Fluid Dynamics Research / J. Colman Lerner, U. Boldes (eds.). Rijeka: InTech, 2011. P. 607–628.
26. Marakasov D.A., Banakh V.A., Sukharev A.A. Vosstanovlenie prostranstvennogo raspredeleniya srednei plotnosti vozdukha v sverkhzvukovoi strue na osnove rezul'tatov lazernogo prosvechivaniya // Optika atmosf. i okeana. 2021. V. 34, N 2. P. 101–106; Marakasov D.A., Banakh V.A., Sukharev A.A. Reconstruction of the spatial distribution of the average air density in a supersonic jet based on results of laser illumination // Atmos. Ocean. Opt. 2021. V. 34, N 3. P. 198–204.
27. Powell A. On the mechanism of choked jet noise // Proc. Phys. Soc. B. 1953. V. 66. P. 1039–1056.
28. Men'shov I.S., Semenov I.V., Akhmed'yanov I.F. Mekhanizm generatsii diskretnykh tonov v sverkhzvukovykh struinykh techeniyakh // Dokl. RAN. 2008. V. 420. P. 331–336.
29. Marakasov D.A., Sazanovich V.M., Tsvyk R.Sh., Shesternin A.N. Investigation of turbulence in axysimmetric supersonic jet from the results of laser transillumination // AIP Conf. Proc. 2017. V. 1893. P. 030082-1–030082-4.
30. Deich M.E. Teoreticheskaya gidrodinamika. L.: Gosenergoizdat, 1961. 669 p.
31. Zapryagaev V.I., Kiselev N.P., Pivovarov A.A. Gasdynamic structure of an axisymmetric supersonic underexpanded jet // Fluid. Dyn. 2015. V. 50. P. 87–97.
32. Seubold J.G., Shirie J.W. Length of the supersonic core in high-speed jets // AIAA J. 1967. V. 5. P. 2062–2064.
33. Shelukhin N.N. Issledovanie kharakteristik sverkhzvukovoi nedorasshirennoi strui // Uch. zap. TsAGI. 1995. V. 26. P. 78–87.
34. Kandula M. On the existence of subharmonic screech in choked circular jets from a sharp-edged orifice // Open. J. Acoustics. 2014. V. 4. P. 20–25.