Vol. 35, issue 05, article # 8

Shaparev N. Ya., Tokarev A. V., Yakubailik O. E. Formation of fogs downstream of the Krasnoyarsk hydropower plant on the Yenisei river. // Optika Atmosfery i Okeana. 2022. V. 35. No. 05. P. 397–401. DOI: 10.15372/AOO20220508 [in Russian].
Copy the reference to clipboard


Generation of fogs downstream of the Krasnoyarsk hydropower plant on the Yenisei River during 2020 is studied. Meteorological conditions at the time of fog generation were recorded on the geoportal developed by the authors; water temperatures were taken at a gauging station; fogs were recorded with the help of video surveillance cameras. Data analysis showed generation of advective cooling fogs in summer and advective steam fogs in winter, early spring, and autumn. Cooling fogs are generated due to the cooling of the moist air as the lower atmosphere interacts with a colder moving water surface. Steam fogs result from the advective cooling of water vapor on the river surface by the colder adjacent atmosphere. The spatial distribution of steam fogs was derived from remote sensing data.


fogs, Yenisei River, meteorological conditions, water temperature, remote sensing


  1. WMO, Aerodrome Reports and Forecast: A User’s Handbook to the Codes. Geneva, Switzerland, 2020. N 782. 86 р.
  2. Duynkerke P.G. Radiation fog: A comparison of model simulation with detailed observations // Mon. Weather Rev. 1991. V. 119, N 2. P. 324–341.
  3. Gultepe I., Tardif R., Michaelides S.C., Cermak J., Bott A., Bendix J., Müller M.D., Pagowski M., Hansen B., Ellrod G., Jacobs W., Toth G., Cober S.G. Fog research: A review of past achievements and future perspectives // Pure Appl. Geophys. 2007. V. 164, N 6–7. P. 1121–1159.
  4. Mason J. The physics of radiation fog // J. Meteorol. Soc. Japan. Ser. II. 1982. V. 60, N 1. P. 486–499.
  5. Bergot T., Guedalia D. Numerical forecasting of radiation fog. Part I: Numerical model and sensitivity tests // Mon. Weather Rev. 1994. V. 122, N 6. P. 1218–1230.
  6. Holets S., Swanson R.N. High-inversion fog episodes in central California // J. Appl. Meteorol. 1981. V. 20, N 8. P. 890–899.
  7. Ryznar E. Advection-radiation fog near Lake Michigan // Atmos. Environ. 1977. V. 11, N 5. P. 427–430.
  8. Saunders P.M. Sea smoke and steam fog // Q. J. R. Meteorol. Soc. 1964. V. 90, N 384. P. 156–165.
  9. Okland H., Gotaas Y. Modelling and prediction of steam fog // Environ. Sci. 1995. V. 68. P. 121–131.
  10. Gultepe I., Isaac G.A., Williams A., Marcotte D., Strawbridge K.B. Turbulent heat fluxes over leads and polynyas, and their effects on arctic clouds during FIRE.ACE: Aircraft observations for April 1998 // Atmosphere–Ocean. 2003. V. 41, N 1. P. 15–34.
  11. Gudoshnikova O.A., Matveev L.T. Obrazovanie i razvitie tumanov s uchetom sinopticheskoj obstanovki // Optika atmosf. i okeana. 2001. V. 14, N 4. P. 303–307.
  12. Zarochentsev G.A., Rubinshtejn K.G., Bychkova V.I., Ignatov R.Yu., Yusupov Yu.I. Sravnenie neskol'kih chislennyh metodov prognoza tumanov // Optika atmosf. i okeana. 2018. V. 31, N 12. P. 981–987.
  13. Dingman S. Physical Hydrology. Illinois: Waveland Press, 2015. 643 p.
  14. Shaparev N., Astafiev N. Water resources of the Krasnoyarsk Krai in sustainable water management indices // Int. J. Sustain. Dev. World Ecol. 2008. V. 15, N 6. P. 574–583.
  15. Yakubailik O.E., Kadochnikov A.A., Tokarev A.V. WEB geographic information system and the hardware and software ensuring rapid assessment of air pollution // Optoelectron. Instrum. Data Process. 2018. V. 54, N 3. P. 243–249.
  16. Murray F.W. On the computation of saturation vapor pressure // J. Appl. Meteorol. 1967. V. 6, N 1. P. 203–204.
  17. Lawrence M.G. The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications // Bull. Am. Meteorol. Soc. 2005. V. 86, N 2. P. 225–234.