Vol. 35, issue 04, article # 10

Fiorani L., Artuso F., Giardina I., Nuvoli M., Pollastrone F. Application of quantum cascade laser to rapid detection of food adulteration. // Optika Atmosfery i Okeana. 2022. V. 35. No. 04. P. 307–311. DOI: 10.15372/AOO20220410 [in Russian].
Copy the reference to clipboard

Abstract:

Economically motivated adulterations (EMAs) of food and juice are a serious threat to our health. Although several accurate analytical methods are available to detect fraudulent ingredients in the supply chain, fast and user-friendly techniques are still missing, especially if reliable deployment in industrial settings is needed. After many years of application of laser photoacoustic spectroscopy (LPAS) to food fraud detection with CO2 lasers, the Diagnostic and Metrology Laboratory of ENEA developed a portable and robust prototype based on a quantum cascade laser (QCL) to rapidly and easily identify EMAs in real scenarios. Fruit juice was used as a case study to evaluate its performance. Two EMAs were sensed in a few minutes and chemometrics tools allowed their quantification.

Keywords:

quantum cascade laser application, laser spectroscopy, photoacoustic technique, agrofood chain, rapid detection of food frauds, juice adulteration with added sugars

References:

  1. Nagy S. Economic adulteration of fruit beverages // Fruit Proces. 1997. N 4. P. 125–131.
  2. Leopold L.F., Leopold N., Diehl H.-A., Socaciu C. Quantification of carbohydrates in fruit juices using FTIR spectroscopy and multivariate analysis // Spectrosc. 2011. V. 26. P. 93–104.
  3. Bray G.A. Potential health risks from beverages containing fructose found in sugar or high-fructose corn syrup // Diabetes Care. 2013. V. 36. P. 11–12.
  4. Gaby A. Adverse effects of dietary fructose // Alter. Med. Rev. 2005. V. 10. P. 294–306.
  5. Yu R., Yang B., Cai L., Lu X., Wang X. Excess free fructose beverages and allergy in children and adolescents: results from NHANES 2005–2006 // The Ann. of Family Medicine. 2018. V. 16. P. 408–418.
  6. Leopold L.F., Diehl H.-A., Socaciu C. Quantification of glucose, fructose and sucrose in apple juices using ATR-MIR spectroscopy coupled with chemometry // Bull. UASVM Agricult. V. 66. P. 350–357.
  7. Karadeniz F., Eks A. Sugar composition of apple juices // European Food Res. Technol. 2002. V. 215. P. 145–148.
  8. Brause A. Detection of apple juice adulteration // Fruit Proc. 1998. V. 7. P. 290–297.
  9. Kelly J.F.D., Downey G. Detection of sugar adulterants in apple juice using Fourier transform infrared spectroscopy and chemometrics // J. Agricult. Food Chem. 2005. V. 53. P. 3281–3286.
  10. Pan G.G., Kilmartin P.A., Smith B.G., Melton L.D. Detection of orange juice adulteration by tangelo juice using multivariate analysis of polymethoxylated flavones and carotenoids // J. Sci. Food Agricult. 2002. V. 82. P. 421–427.
  11. Kelly J.F.D., Downey G., Fouratier V. Initial study of honey adulteration by sugar solutions using midinfrared (MIR) spectroscopy and chemometrics // J. Agricult. Food Chem. 2004. V. 52. P. 33–39.
  12. Haisch C. Photoacoustic spectroscopy for analytical measurements // Meas. Sci. Technol. 2012. V. 23, N 012001. 17 p.
  13. Fiorani L., Artuso F., Giardina I., Lai A., Mannori S., Puiu A. Photoacoustic laser system for food fraud detection // Sensors. 2021. V. 21, N 4178. 11 p.
  14. Comprehensive Chemometrics / S. Brown, R. Tauler, B. Walczak (eds.). Amsterdam: Elsevier, 2020. 2944 p.
  15. Manohar S., Razansky D. Photoacoustics: A historical review // Adv. Opt. Photon. 2016. V. 8. P. 586–617.