Vol. 35, issue 01, article # 5

Korshunov V. A., Zubachev D. S. Increase in the aerosol backscattering ratio at lower mesosphere in 2019–2021 and its influence on the temperature measurements by the Rayleigh method. // Optika Atmosfery i Okeana. 2022. V. 35. No. 01. P. 32–36. DOI: 10.15372/AOO20220105 [in Russian].
Copy the reference to clipboard

Abstract:

The measurements of aerosol backscattering ration in the lower mesosphere by means of sounding at two wavelengths of 355 and 532 nm at lidar stations of Roshydromet from 2012 to 2021 are presented. Appreciable increase in the backscattering ratio R has been observed in the altitude range 50–70 km since 2018. In 2019–2020, the average R attained 1.25 at an altitude of 70 km. The temperature measurements by the Rayleigh method at 532 nm in this period show a positive bias of the temperature of up to +20 K. The two-wavelength temperature measurement method allows one to eliminate this error.

Keywords:

aerosol, mesosphere, backscattering, lidar, solar activity, Rayleigh method for temperature measurements

References:

1. Bardeen C.G., Toon O.B., Jensen E.J., Marsh D.R., Harvey V.L. Numerical simulations of the three-dimensional distribution of meteoric dust in the mesosphere and upper stratosphere // J. Geophys. Res. 2008. V. 113. P. D17202.
2. Hervig M.E., Brooke J.S.A., Feng W., Bardeen C.G., Plane J.M.C. Constraints on meteoric smoke composition and meteoric influx using SOFIE observations with models // J. Geophys. Res.: Atmos. 2017. V. 122. P. 13,495–13,505.
3. Stude J., Aufmhoff H., Schlager H., Rapp M., Arnold F., Strelnikov B. A novel rocket-borne ion mass spectrometer with large mass range: Instrument description and first-flight results // Atmos. Meas. Tech. 2021. V. 14. P. 983–993.
4. Cheremisin A.A., Granitskij L.V., Myasnikov V.M., Vetchinkin N.V. Distantsionnoe zondirovanie v ul'trafioletovom diapazone aerozol'nogo sloya v okrestnosti stratopauzy s borta kosmicheskoj astrofizicheskoj stantsii «Astron» // Optika atmosf. i okeana. 1998. V. 11, N 10. P. 1111–1117.
5. Bychkov V.V., Perezhogin A.S., Shevtsov B.M., Marichev V.N., Matvienko G.G., Belov A.S., Cheremisin A.A., Perezhogin Al.S. Lidarnye nablyudeniya poyavleniya aerozolej v srednej atmosfere Kamchatki v 2007–2011 years // Optika atmosf. i okeana. 2012. V. 25, N 1. P. 87–93; Bychkov V.V., Perezhogin A.S., Shevtsov B.M., Marichev V.N., Matvienko G.G., Belov A.S., Cheremisin A.A. Lidar observations of aerosol occurrence in the middle atmosphere of Kamchatka in 2007–2011 // Atmos. Ocean. Opt. 2012. V. 25, N 3. P. 228–235.
6. Ivanov V.N., Zubachev D.S., Korshunov V.A., Sahibgareev D.G. Setevoj lidar AK-3 dlya zondirovaniya srednej atmosfery: ustrojstvo, metody izmerenij, rezul'taty issledovanij // Tr. GGO. 2020. Iss. 598. P. 155–187.
7. Korshunov V.A., Merzlyakov E.G., Yudakov A.A. Nablyudeniya meteornogo aerozolya v verhnej stratosfere – nizhnej mezosfere metodom dvuhvolnovogo lidarnogo zondirovaniya // Optika atmosf. i okeana. 2018. V. 31, N 10. P. 805–814; Korshunov V.A., Merzlyakov E.G., Yudakov A.A. Observations of meteoric aerosol in the upper stratosphere – lower mesosphere by the method of two-wavelength lidar sensing // Atmos. Ocean. Opt. 2019. V. 32, N 1. P. 45–54.
8. Korshunov V.A., Zubachev D.S., Merzlyakov E.G., Jacobi Ch. Rezul'taty opredeleniya aerozol'nyh harakteristik srednej atmosfery metodom dvuhvolnovogo lidarnogo zondirovaniya i ih sopostavlenie s izmereniyami meteornogo radioekho // Optika atmosf. i okeana. 2014. V. 27, N 10. P. 862–868; Korshunov V.A., Zubachev D.S., Merzlyakov E.G., Jacobi Ch. Aerosol parameters of middle atmosphere measured by two-wavelength lidar sensing and their comparison with radio meteor echo measurements // Atmos. Ocean. Opt. 2015. V. 28, N 1. P. 82–88.
9. Korshunov V.A., Zubachev D.S. Opredelenie parametrov volnovyh vozmushchenij srednej atmosfery po dannym lidarnyh izmerenij // Optika atmosf. i okeana. 2015. V. 28, N 11. P. 993–1002; Korshunov V.A., Zubachev D.S. Determining the parameters of wave disturbances of the middle atmosphere from lidar measurements // Atmos. Ocean. Opt. 2016. V. 29, N 2. P. 152–161.
10. Wing R., Hauchecorne A., Keckhut P., Godin-Beekmann S., Khaykin S., McCullough E.M., Mariscal J.-F., d’Almeida É. Lidar temperature series in the middle atmosphere as a reference data set – Part 1: Improved retrievals and a 20-year cross-validation of two co-located French lidars // Atmos. Meas. Tech. 2018. V. 11. P. 5531–5547.