Vol. 29, issue 06, article # 2

Penenko A. V., Sorokovoy A. A., Sorokovaya K. E. Numerical model for bioaerosol transformation in the atmosphere. // Optika Atmosfery i Okeana. 2016. V. 29. No. 06. P. 462–466. DOI: 10.15372/AOO20160602 [in Russian].
Copy the reference to clipboard

Abstract:

Non-stationary mathematical model of bioaerosol dynamics is considered. It is based on nonlinear integral-differential equations describing coagulation, condensation, and evaporation processes. Unconditionally positive numerical schemes for transformation problem is presented. The algorithm is based on discrete analytical approximations using fundamental solutions of local ajoint problems. The model was numerically compared with the models describing individual mechanisms in its composition. The relative contribution of each mechanism in the overall dynamics of aerosol populations is investigated based on numerical experiments.

Keywords:

mathematical modeling, aerosol populations, impurities transformation, coagulation, integral-differential equations

References:

  1. Penenko V.V., Tsvetova E.A., Penenko A.V. Variational approach and Euler’s integrating factors for environmental studies // Comput. Math. Appl. 2014. V. 67, N 12. P. 2240–2256.
  2. Penenko V.V., Cvetova E.A. Variacionnye metody postroenija monotonnyh approksimacij dlja modelej himii atmosfery // Sib. zhurn. vychisl. matem. 2013. V. 16, N 3. P. 243–256.
  3. Penenko V.V. Metody chislennogo modelirovanija atmosfernyh processov. L.: Gidrometeoizdat, 1981. 352 p.
  4. Alojan A.E. Modelirovanie dinamiki i kinetiki gazovyh primesej i ajerozolej v atmosfere. M.: Nauka, 2008. 415 p.
  5. Drake R.L. A General mathematical survey of the coagulation equation // Topics in Current Aerosol Research (Part 2). New York: Pergamon Press, 1972. P. 201–376.
  6. Pruppacher H.R., Klett J.D. Microphysics of clouds and precipitation. Boston: Riedel, 1980. 954 p.
  7. Bortz D.M., Jackson T.L., Taylor K.A., Thompson A.P., Younger J.G. Klebsiella pneumoniae flocculation dynamics // Bull. Math. Biol. 2008. V. 70, N 3. P. 745–768.
  8. Niwa H.S. School size statistics of fish // J. Theor. Biol. 1988. V. 195, N 3. P. 351–361.
  9. Galkin V.A. Uravnenie Smoluhovskogo. M.: FIZMATLIT, 2001. 334 p.
  10. Mahoney A.W., Ramkrishna D. Efficient solution of population balance equations with discontinuities by finite elements // Chem. Eng. Sci. 2002. V. 57, N 7. P. 1107–1119.
  11. Matveev S.A., Tyrtyshnikov E.E., Smirnov A.P., Brilliantov N.V. Bystryj metod reshenija uravnenij agregacionno-fragmentacionnoj kinetiki tipa uravnenij Smoluhovskogo // Vych. met. programmirovanie. 2014. V. 15, N 1. P. 1–8.
  12. Matveev S.A., Smirnov A.P., Tyrtyshnikov E.E. A fast numerical method for the Cauchy problem for the Smoluchowski equation // J. Comput. Phys. 2015. V. 282. P. 23–32.
  13. Filbet F., Laurenot P. Numerical simulation of the smoluchowski coagulation equation // SIAM J. Sci. Comput. 2004. V. 25, N 6. P. 2004–2028.
  14. Verkoeijen D., Pouw G.A., Meesters G.M.H., Scarlett B. Population balances for particulate processes a volume approach // Chem. Eng. Sci. 2002. V. 57, N 12. P. 2287–2303.
  15. Ramkrishna D. Population Balances: Theory and applications to particulate systems in engineering. San Diego: Academic Press, 2000. 365 p.
  16. Barrett J.C., Jheeta J.S. Improving the accuracy of the moments method for solving the aerosol general dynamic equation // J. Aerosol Sci. 1996. V. 27, N 8. P. 1135–1142.
  17. Madras G., McCoy B.J. Reversible crystal growth dissolution and aggregation breakage: Numerical and moment solutions for population balance equations // Powder Technol. 2004. V. 143–144. P. 297–307.
  18. Kruis F.E., Maisels A., Fissan H. Direct simulation Monte Carlo method for particle coagulation and aggregation // AIChE  J. 2000. V. 46, N 9.  P. 1735–1742.
  19. Lin Y., Lee K., Matsoukas T. Solution of the population balance equation using constant-number Monte Carlo // Chem. Eng. Sci. 2002. V. 57. P. 2241–2252.
  20. Ranjbar M., Adibi H., Lakestani M. Numerical solution of homogeneous Smoluchowski’s coagulation equation // Int. J. Comput. Math. 2010. V. 87, N 9. P. 2113–2122.
  21. Lee M.H. A survey of numerical solutions to the coagulation equation // J. Phys. A. 2001. V. 34, N 47. P. 10219–10241.
  22. Hochbruck M., Ostermann A. Exponential Runge–Kutta methods for parabolic problems // Appl. Numer. Math. 2005. V. 53, N 2–4. P. 323–339.
  23. Seinfeld J.H., Pandis S. Atmospheric chemistry and physics: from air pollution to climate change. N.Y.: Willey, 1988. 1232 p.
  24. Reshetin V.P., Regens J.L. Simulation modeling of anthrax spore dispersion in a bioterrorism incident // Risk Analysis. 2003. V. 23, N 6. P. 1135–1145.
  25. Tsang T.H., Brock J.R. Simulation of condensation aerosol growth by condensation and evaporation // Aerosol Sci. Technol. 1982. V. 2, N 3. P. 311–320.
  26. Marchuk G.I. Metody vychislitel'noj matematiki. M.: Nauka, 1980. 536 p.
  27. Penenko A.V., Sorokovoj A.A. Primenenie diskretno-analiticheskih shem dlja chislennogo reshenija koaguljacionnogo uravnenija Cmoluhovskogo // Interjekspo GEO-SIBIR''. 2015. V. 4, N 1. P. 140–144.