Vol. 28, issue 12, article # 1

Duchko A. N. Singularities of complex-valued H2O energy function. Estimating resonances in vibrational energy spectrum of H2O. // Optika Atmosfery i Okeana. 2015. V. 28. No. 12. P. 1051–1058. DOI: 10.15372/AOO20151201 [in Russian].
Copy the reference to clipboard

Abstract:

High order Rayleigh–Schrödinger perturbation theory and Pade–Hermite algebraic approximants are applied to calculate vibration energy levels of H2O. Quadratic Katz branch points found by second-order algebraic approximants are used to classify resonances between vibrational states of the H2O molecule. Apart from Fermi and Darling–Dennison resonances new resonance perturbations of states were found. Moreover, it was shown that all states with energy higher than 5000 cm–1 are in one resonance polyad. This analysis helped us to improve polyad structure of vibrational states of water molecule.

Keywords:

perburbation theory, divergent series, algebraic approximants, vibrational energy levels, H2O molecule

References:

  1. Herman M., Perry D.S. Molecular spectroscopy and dynamics: A polyad-based perspective // Phys. Chem. Chem. Phys. 2013. V. 15. P. 9970–9993.
  2. Krasnoshchekov S.V., Isayeva E.V., Stepanov N.F. Criteria for first- and second-order vibrational resonances and correct evaluation of the Darling–Dennison resonance coefficients using the canonical Van Vleck perturbation theory // J. Chem. Phys. 2014. V. 141. P. 234114.
  3. Sarka K., Demaison J. Perturbation theory, effective Hamiltonians and force constants // Computational Molecular Spectroscopy / Eds. by Per Jensen, P.R. Bunker. United Kingdom: Wiley & Sons, 2000. P. 255–303.
  4. Bykov A.D., Duchko A.N., Kalinin K.V. Calculation of the energy levels of excited vibrational states of the HD16O molecule by summing divergent series of the Rayleigh–Schrödinger perturbation theory. The shift of zero order levels // Opt. Spektrosk. 2014. V. 116, N 4. P. 598–605.
  5. Katz A. The analytic structure of many-body perturbation theory // Nucl. Phys. 1962. V. 29. P. 353–372.
  6. Bykov A.D., Duchko A.N. Klassifikacija sluchajnyh rezonansov v kolebatel'nom spektre N2SO i tochki vetvlenija Katca // Optika i spektroskopija. 2016. (in print).
  7. Császár A.G., Mills I.M. Vibrational energy levels of water // Spectrochimica Acta. Pt. A. 1997. V. 53(8). P. 1101–1122.
  8. Cizek J., Spirko V., Bludsky O. On the use of divergent series in vibrational spectroscopy. Two- and three-dimensional oscillators // J. Chem. Phys. 1993. V. 99. P. 7331.
  9. Goodson D.Z., Sergeev A.V. On the use of algebraic approximants to sum divergent series for Fermi resonances in vibrational spectroscopy // J. Chem. Phys. 1999. V. 110, N 16. P. 8205–8206.
  10. Suslov I.M. Rashodjashhiesja rjady teorii vozmushhenij // Zh. jeksperim. i teor. fiz. 2005. V. 127. P. 1350–1402.
  11. Arteca G.A., Fernandez F.M., Castro E.A. Large-order perturbation theory and summation method in quantum mechanics // Lect. Notes Chem. 1990. V. 53. Р. 1–4.
  12. Weniger E.J., Cizek J., Vinette F. The summation of the ordinary and renormalized perturbation series for the ground state energy of the quartic, sextic, and octic anharmonic oscillators using nonlinear sequence transformations // J. Math. Phys. 1993. V. 34. P. 571.
  13. Simon B., Dicke A. Coupling constant analyticity for the anharmonic oscillator // Ann. Phys. 1970. V. 58, iss. 1. P. 76–136.
  14. Goodson D.Z. Resummation methods // WIREs Comput. Mol. Sci. 2012. V. 2. P. 743–761.