Vol. 38, issue 06, article # 9

Nasonov S. V., Balin Yu. S., Klemasheva M. G., Kokhanenko G. P., Novoselov M. M., Penner I. E. Features of daily variability of the vertical structure of aerosol in atmospheric boundary layer over the coastal zone of Lake Baikal. // Optika Atmosfery i Okeana. 2025. V. 38. No. 06. P. 474–480. DOI: 10.15372/AOO20250609 [in Russian].
Copy the reference to clipboard

Abstract:

In environmental studies of atmospheric pollution, information is needed on the physical processes that determine the spatiotemporal distribution of aerosol fields. The article presents the results of lidar studies of the troposphere in the summer period from 2015 to 2023 on Lake Baikal, at the Boyarsky research station of Institute of Physical Material Science SB RAS, the Republic of Buryatia. Observations were carried out using LOSA lidars. Three main types of meteorological situations typical for the coastal zone of southern Baikal in the summer period, which determine generation and transport of aerosol in the atmosphere, are considered: breeze circulation, southwesterly transfer, and change of air masses. The features of the daily dynamics of the spatial distribution of aerosol in the atmosphere are given for the three specified types of situations. In the first case, the main changes are observed in the lower 2–3 km layer of the troposphere. During the day, due to the wind from the lake, the aerosol in the lower part of the atmosphere (below 1 km) begins to “press to the ground” and does not rise to the overlying layers. A distinctive feature of the second type of situations is that aerosol layers were detected at fairly high altitudes of up to 5–7 km. The third type is characterized by a smooth decrease of the observed aerosol layers throughout the range of altitudes down to the ground layer during the day. The results of two-position synchronous lidar observations of the transport of atmospheric heterogeneities at different altitudes above the coastal zone of Lake Baikal are also presented; it was revealed that the transport velocity can greatly vary, reaching several tens of meters per second.

Keywords:

Lake Baikal, aerosol, lidar, planetary boundary layer, meteorological parameters, breeze circulation

Figures:

References:

1. Burman E.A. Mestnye vetry. L.: Gidrometeoizdat, 1969. 324 p.
2. Arshinov M.Yu., Belan B.D., Ivlev G.A., Rasskazchikova T.M. Prostranstvenno-vremennye kharakteristiki tsirkulyatsii vozdukha v kotlovine oz. Baikal // Optika atmosf. i okeana. 2001. V. 14, N 4. P. 290–293.
3. Zuev V.E., Antonovich V.V., Belan B.D., Zhbanov E.F., Mikushev M.K., Panchenko M.V., Podanev A.V., Tolmachev G.N., Shcherbatova A.V. Fenomen krugovoi tsirkulyatsii vozdukha v kotlovine ozera Baikal // Dokl. RAN. 1992. V. 325, N 6. P. 1146–1150.
4. Arshinov M.Yu., Belan B.D., Ivlev G.A., Podanev A.V., Pokrovskii E.V., Rasskazchikova T.M., Sklyadneva T.K. Nekotorye kharakteristiki tsirkulyatsii vozdukha vdol' perimetra oz. Baikal // Meteorol. i gidrol. 1999. N 8. P. 66–71.
5. Banakh V.A., Smalikho I.N. Lidar observations of atmospheric internal waves in the boundary layer of the atmosphere on the coast of Lake Baikal // Atmos. Meas. Tech. 2016. V. 9, N 10. P. 5239–5248. DOI: 10.5194/amt-9-5239-2016.
6. Shikhovtsev M.Yu., Shikhovtsev A.Yu., Kovadlo P.G., Obolkin V.A., Molozhnikova E.V. Vliyanie struktury vozdushnykh dvizhenii na kharakteristiki turbulentnosti i soderzhanie dioksida sery v atmosfere nad st. «Listvyanka» // Optika atmosf. i okeana. 2024. V. 37, N 11. P. 954–961. DOI: 10.15372/AOO20241108.
7. Su T., Li Z., Kahn R. A new method to retrieve the diurnal variability of planetary boundary layer height from lidar under different thermodynamic stability conditions // Remote Sens. Environ. 2020. V. 237, N 111519. DOI: 10.1016/j.rse.2019.111519.
8. Kim M.-H., Yeo H., Park S., Park D.-H., Omar A., Nishizawa T., Shimizu A., Kim S.-W. Assessing CALIOP-derived planetary boundary layer height using ground-based lidar // Remote Sens. 2021. V. 13, N 1496. DOI: 10.3390/rs13081496.
9. Nasonov S., Balin Yu., Klemasheva M., Kokhanenko G., Novoselov M., Penner I. Study of atmospheric aerosol in the Baikal mountain basin with shipborne and ground-based lidars // Remote Sens. 2023. V. 15, N 3816. DOI: 10.3390/rs15153816.
10. Balin Yu.S., Bairashin G.S., Kokhanenko G.P., Penner I.E., Samoilova S.V. LOSA-M2 aerosol Raman lidar // Quantum Electron. 2011. V. 41, N 10. P. 945. DOI: 10.1070/QE2011v041n10ABEH014574.
11. Nasonov S., Balin Yu., Klemasheva M., Kokhanenko G., Novoselov M., Penner I., Samoilova S., Khodzher T. Mobile aerosol Raman polarizing lidar LOSA-A2 for atmospheric sounding // Atmosphere. 2020. V. 11, N 1032. P. 1–12. DOI: 10.3390/atmos11101032.
12. Gidromettsentr Rossii. URL: https://meteoinfo.ru/mapsynop (data obrashcheniya: 04.03.2025).
13. Draxler R.R., Rolph G.D. HYSPLIT (HYbridSingle-Particle Lagrangian Integrated Trajectory) model. URL: http://www.arl.noaa.gov/ready/hysplit4.html (last access: 10.03.2025).
14. Statsionarnye meteorologicheskie kompleksy SAP. URL: http://meteosap.ru/catalog/amk-03/ (data obrashcheniya: 17.12.2024).
15. The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation. URL: https://www-calipso.larc.nasa.gov/ (last access: 17.12.2024).
16. Toya T., Kimura F., Murayama N. Aircraft measurements of medium-range transport of air pollutants over complex terrain // J. Meteorol. Soc. Jpn. 1986. V. 64, N 3. P. 431–442. DOI: 10.2151/jmsj1965.64.3_431.
17. Belan B.D. Dinamika sloya peremeshivaniya po aerozol'nym dannym // Optika atmosf. i okeana. 1994. V. 7, N 8. P. 1045–1054.
18. Liu S., Liang X. Observed diurnal cycle climatology of planetary boundary layer height // J. Climate. 2010. V. 23, N 21. P. 5790–5809. DOI: 10.1175/2010JCLI3552.1.
19. Banks R.F., Tiana-Alsin J., María Baldasano J., Rocadenbosch F., Papayannis A., Solomos S., Tzanis C.G. Sensitivity of boundary-layer variables to PBL schemes in thewrfmodel based on surface meteorological observations, lidar, and radiosondes during the hygra-CD campaign // Atmos. Res. 2016. V. 176–177. P. 185–201. DOI: 10.1016/j.atmosres.2016.02.024.
20. Li Z., Guo J., Ding A., Liao H., Liu J., Sun Y., Wang T., Xue H., Zhang H., Zhu B. Aerosol and boundary-layer interactions and impact on air quality // Natl. Sci. Rev. 2017. V. 4. P. 810–833. DOI: 10.1093/nsr/nwx117.
21. Nakoudi K., Giannakaki E., Dandou A., Tombrou M., Komppula M. Planetary boundary layer height by means of lidar and numerical simulations over New Delhi, India // Atmos. Meas. Tech. 2019. V. 12. P. 2595–2610. DOI: 10.5194/amt-12-2595-2019.
22. Danchovski V. Summertime urban mixing layer height over Sofia, Bulgaria // Atmosphere. 2019. V. 10, N 36. DOI: 10.3390/atmos10010036.
23. Zayakhanov A.S., Zhamsueva G.S., Sungrapova I.P., Tsydypov V.V. Osobennosti sutochnoj izmenchivosti mikrodispersnoj fraktsii aerozolya v atmosfere pribrezhnoj zony ozera Bajkal i aridnoj zony Mongolii // Optika atmosf. i okeana. 2018. V. 31, N 1. P. 17–23. DOI: 10.15372/AOO20180103; Zayakhanov A.S., Zhamsueva G.S., Sungrapova I.P., Tsydypov V.V. Features of diurnal variability of ultrafine aerosol in the air of the Baikal coastal zone and arid zone of Mongolia // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 257–262.
24. Nasonov S., Balin Yu., Klemasheva M., Kokhanenko G., Novoselov M., Penner I. Peculiarities of the vertical structure of atmospheric aerosol fields in the basin of Lake Baikal according to lidar observations // Atmosphere. 2023. V. 14, N 5. P. 837. DOI: 10.3390/atmos14050837.
25. Nasonov S.V., Balin Yu.S., Klemasheva M.G., Kokhanenko G.P., Nasonova A.S., Novoselov M.M., Penner I.E. Sinkhronnye lidarnye nablyudeniya prostranstvenno-vremennoi struktury atmosfernogo aerozolya v pribrezhnoi zone ozera Baikal // Optika atmosf. i okeana. 2023. V. 36, N 9. P. 725–732. DOI: 10.15372/AOO20230904.