Vol. 38, issue 06, article # 8

Malakhova V. V. Methane emission from Arctic shelf sediments when hydrate stability conditions are violated. // Optika Atmosfery i Okeana. 2025. V. 38. No. 06. P. 467–473. DOI: 10.15372/AOO20250608 [in Russian].
Copy the reference to clipboard

Abstract:

Based on numerical simulation, we have estimated the thickness and spatial distribution of the methane hydrate stability zone (MHSZ) associated with submarine permafrost. Using CMIP6 ensemble model results under a scenario of high anthropogenic greenhouse gas emissions (SSP5-8.5), we find that the shrinkage of the MHSZ weakly depends on ongoing warming and occurs mainly on the lower boundary side. This process is mainly a consequence of the Holocene marine transgression and depends on the intensity of the geothermal flux. The spatial distribution of the methane fluxes from the bottom sediments as a consequence of the degradation of gas hydrates under the violation of their conditions of existence has been obtained. The estimated intensity of methane emission from the seafloor to the water was 15 Tg per year for the modern period and 16–17 Tg per year up to 2300 (similar estimates for the intensity of emission from the water to the atmosphere were not made in this work). Significant changes in the intensity of methane emissions from the seafloor to the water are not likely for at least several thousand years. The resulting fields of methane fluxes from bottom sediments can be used in numerical ocean models to estimate methane emissions to the atmosphere.

Keywords:

methane emission, Arctic, methane hydrate stability zone, numerical simulation

Figures:

References:

1. Romanovskii N., Hubberten H.-W., Gavrilov A., Eliseeva A., Tipenko G. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian seas // Geo-Mar. Lett. 2005. V. 25. P. 167–182. DOI: 10.1007/s00367-004-0198-6.
2. Malakhova V.V., Eliseev A.V. Subsea permafrost and associated methane hydrate stability zone: How long can they survive in the future? // Theor. Appl. Climatol. 2024. V. 155. P. 3329–3346. DOI: 10.1007/s00704-023-04804-7.
3. Bauch H.A., Mueller-Lupp T., Taldenkova E., Spielhagen R.F., Kassens H., Grootes P.M., Thiede J., Heinemeier J., Petryashov V. Chronology of the Holocene transgression at the North Siberian margin // Glob. Planet. Change. 2001. V. 31. P. 125–139. DOI: 10.1016/S0921-8181(01)00116-3.
4. Ruppel C.D., Kessler J.D. The interaction of climate change and methane hydrates // Rev. Geophys. 2017. V. 55. P. 126–168. DOI: 10.1002/2016RG000534.
5. Alekseev G.V., Kharlanenkova N.E., Vyazilova A.E. Arkticheskoe usilenie: rol' mezhdushirotnogo obmena v atmosfere // Fundament. prikl. klimatol. 2023. V. 9, N 1. P. 13–32. DOI: 10.21513/2410-8758-2023-1-13-32.
6. Previdi M., Smith K.L., Polvani L.M. Arctic amplification of climate change: A review of underlying mechanisms // Environ. Res. Lett. 2021. V. 16. P. 093003. DOI: 10.1088/1748-9326/ac1c29.
7. Janout M., Hölemann J., Juhls B., Krumpen T., Rabe B., Bauch D., Wegner C., Kassens H., Timokhov L. Episodic warming of near-bottom waters under the Arctic sea ice on the central Laptev Sea shelf // Geophys. Res. Lett. 2016. V. 43. P. 264–272. DOI: 10.1002/2015GL066565.
8. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change / Masson-Delmotte V., Zhai P., Pirani A., Connors S., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M., et al. (eds.). Cambridge, UK: Cambridge University Press, 2021. 2391 p. DOI: 10.1017/9781009157896.
9. Shu Q., Wang Q., Årthun M., Wang S., Song Z., Zhang M., Qiao F. Arctic Ocean Amplification in a warming climate in CMIP6 models // Sci. Adv. 2022. V. 8, N 30. DOI: 10.1126/sciadv.abn9755.
10. Malakhova V.V., Eliseev A.V. Chuvstvitel'nost' temperatury pridonnogo sloya morei arkticheskogo shel'fa k temperature vozdukha v XX–XXIII vv. po dannym CMIP6 // Vestn. Mosk. un-ta. Ser. 5. Geogr. 2024. V. 79, N 2. P. 108–120.
11. Bogoyavlensky V., Kishankov A., Kazanin A. Evidence of large-scale absence of frozen ground and gas hydrates in the northern part of the East Siberian Arctic shelf (Laptev and East Siberian seas) // Mar. Petrol. Geol. 2023. V. 148. P. 106050. DOI: 10.1016/j.marpetgeo.2022.106050.
12. Shakhova N., Semiletov I., Chuvilin E. Understanding the permafrost–hydrate system and associated methane releases in the east Siberian Arctic Shelf // Geosci. 2019. V. 9. P. 251. DOI: 10.3390/geosciences9060251.
13. Wilkenskjeld S., Miesner F., Overduin P.P., Puglini M., Brovkin V. Strong increase in thawing of subsea permafrost in the 22nd century caused by anthropogenic climate change // The Cryosphere. 2022. V. 16, N 3. P. 1057–1069. DOI: 10.5194/tc-16-1057-2022.
14. You K. Biodegradation of ancient organic carbon fuels seabed methane emission at the Arctic continental shelves // Global Biogeochem. Cycl. 2024. V. 38. DOI: 10.1029/2023GB007999.
15. Skeie R.B., Hodnebrog Ø., Myhre G. Trends in atmospheric methane concentrations since 1990 were driven and modified by anthropogenic emissions // Commun. Earth Environ. 2023. V. 4. P. 317. DOI: 10.1038/s43247-023-00969-1.
16. Chernykh D.V., Kosmach D.A., SHakhova N.E., Salomatin A.S., Salyuk A.N., Domanyuk A.V., Spivak E.A., Gershelis E.V., Dudarev O.V., Krasikov V.A., Anan'ev R.A., Semiletov I.P. Kolichestvennaya otsenka puzyr'kovogo metana, dostigayushchego privodnykh sloev atmosfery v Arktike // Izv. Tom. politekhn. un-ta. Inzhiniring georesursov. 2024. V. 335, N 12. P. 184–197. DOI: 10.18799/24131830/2024/12/4788.
17. Thornton B.F., Prytherch J., Andersson K., Brooks I.M., Salisbury D., Tjernström M., Crill P.M. Shipborne eddy covariance observations of methane fluxes constrain Arctic sea emissions // Sci. Adv. 2020. V. 6. DOI: 10.1126/sciadv.aay7934.
18. Puglini M., Brovkin V., Regnier P., Arndt S. Assessing the potential for non-turbulent methane escape from the East Siberian Arctic shelf // Biogeosci. 2020. V. 17. P. 3247–3275. DOI: 10.5194/bg-17-3247-2020.
19. Malakhova V.V. Modeling of the Arctic subsea permafrost thawing under possible climate warming // Proc. SPIE. 2023. V. 12780. P. 127804U. DOI: 10.1117/12.2688510.
20. Moridis G.J. Numerical studies of gas production from methane hydrates // Soc. Petrol. Eng. J. 2003. V. 32, N 8. P. 359–370.
21. Biastoch A., Treude T., Rupke L., Riebesell U., Roth C., Burwicz E.B., Park W., Latif M., Böning C.W., Madec G., Wallmann K. Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification // Geophys. Res. Lett. 2011. V. 38, N 8. P. L08602. DOI: 10.1029/2011GL047222.
22. Majumdar U., Cook A. The volume of gas hydrate-bound gas in the northern Gulf of Mexico // Geochem. Geophys. Geosyst. 2018. V. 19, N 11. P. 4313–4328. DOI: 10.1029/2018GC007865.
23. Klauda J., Sandler S. Global distribution of methane hydrate in ocean sediment // Energy Fuels. 2005. V. 19, N 2. P. 459–470. DOI: 10.1021/ef049798o.
24. Davies J.H. Global map of solid Earth surface heat flow // Geochem. Geophys. Geosys. 2013. V. 14. P. 4608–4622. DOI: 10.1002/ggge.20271.
25. Ganopolski A., Winkelmann R., Schellnhuber H. Critical insolation-CO2 relation for diagnosing past and future glacial inception // Nature. 2016. V. 529, N 7585. P. 200–203. DOI: 10.1038/nature16494.
26. Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewski C., Wang J., Leetmaa A., Reynolds R., Jenne R., Joseph D. The NCEP/NCAR 40-year reanalysis project // Bull. Am. Meteorol. Soc. 1996. V. 77. P. 437–471. DOI: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
27. Mokhov I.I., Malakhova V.V., Arzhanov M.M. Model estimates of intra- and intersentennial degradation of permafrost on the Yamal Peninsula under warming // Doklady Earth Sci. 2022. V. 506, N 2. P. 782–789. DOI: 10.1134/S1028334X22600426.
28. Malakhova V.V., Kraineva M.V. Chuvstvitel'nost' modeli emissii metana s akvatorii morei arkticheskogo shel'fa k parametrizatsii protsessa gazoobmena // Optika atmosf. i okeana. 2024. V. 37, N 6. P. 519–526. DOI: 10.15372/AOO20240611; Malakhova V.V., Kraineva M.V. Sensitivity of the model of methane emission from Arctic shelf seas to gas exchange parameterization // Atmos. Ocean. Opt. 2024. V. 37, N 5. P. 698–705.
29. Miesner F., Overduin P.P., Grosse G., Strauss J., Langer M., Westermann S., Schneider von Deimling T., Brovkin V., Arndt S. Subsea permafrost organic carbon stocks are large and of dominantly low reactivity // Sci. Rep. 2023. V. 13. P. 9425. DOI: 10.1038/s41598-023-36471-z.
30. Bogoyavlenskii V.I., Kishankov A.V., Kazanin A.G. Merzlota, gazogidraty i sipy gaza v tsentral'noi chasti morya Laptevykh // Dokl. RAN. 2021. V. 500, N 1. P. 83–89. DOI: 10.31857/S2686739721090048.