Vol. 38, issue 06, article # 3

Mordvin E.. Yu., Revyakin A. I ., Lagutin A. A. Aerosol optical depth of the atmosphere in the area of the TAIGA gamma-ray observatory according to GEOS-CHEM chemical model and CAMS chemical reanalysis. // Optika Atmosfery i Okeana. 2025. V. 38. No. 06. P. 432–438. DOI: 10.15372/AOO20250603 [in Russian].
Copy the reference to clipboard

Abstract:

Atmospheric aerosol affects astronomical observations performed in the visible spectral range (400−700 nm). Therefore, information on the dynamics of the optical properties of the medium in the area of an astrophysical experiment is necessary for the correct interpretation of the results. Due to the lack of local measurements, data on the state of the atmosphere can be obtained, for example, from numerical simulation. The paper discusses the results of AOD simulation using the GEOS-CHEM chemical transport model and CAMS chemical reanalysis for the TAIGA gamma-ray observatory area, where EAS Cherenkov radiation is recorded at night. It is shown that the average AOD value (550 nm) for the period from September to April in 2019–2022 according to GEOS-CHEM and CAMS data are ~ 0.08 and ~ 0.05, respectively. The AOD maximum is observed in April and can attain 0.6. Verification of the simulation results using AERONET data showed their satisfactory agreement: the correlation coefficient is 0.92 for GEOS-CHEM and 0.91 for CAMS. Thus, the results of GEOS-CHEM and CAMS can be used at the stage of processing the experimental data of the TAIGA gamma-ray observatory, as well as similar astrophysical projects.

Keywords:

AOD, simulation, GEOS-CHEM, CAMS, TAIGA gamma-ray observatory

References:

1. Astapov I.I., Bez"yazykov P.A., Blank M., Bonvech E.A., Borodin A.N., Bryukner M., Budnev N.M., Bulan A.V., Vaidyanatan A., Vishnevskii R., Volkov N.V., Volchugov P.A., Voronin D.M., Gafarov A.R., Gress O.A., Gress T.I., Grishin O.G., Garmash A.Yu., Grebenyuk V.M., Grinyuk A.A., Dyachok A.N., ZHurov D.P., Zagorodnikov A.V., Ivanova A.L, Kalmykov N.N., Kindin V.V., Kiryukhin S.N., Kokoulin R.P., Kompaniets K.G., Korosteleva E.E., Kozhin V.A., Kravchenko E.A., Kryukov A.P., Kuz'michev L.A., K'yavassa A., Lagutin A.A., Lavrova M.V., Lemeshev E.YU., Lubsandorzhiev B.K., Lubsandorzhiev N.B., Mirgazov R.R., Mirzoyan R., Monkhoev R.D., Osipova E.A., Pakhorukov A.L., Pan A., Panasyuk M.I., Pan'kov L.V., Petrukhin A.A., Podgrudkov D.A., Poleshchuk V.A., Popova E.G., Porelli A., Postnikov E.B., Prosin V.V., Ptuskin V.S., Pushnin A.A., Razumov A.V., Raikin R.I., Rubtsov G.I., Ryabov E.V., Sagan' YA.I., Samoliga V.S., Satyshev I., Silaev A.A., Silaev A.A. (ml.), Sidorenkov A.YU., Skurikhin A.V., Sokolov A.V., Sveshnikova L.G., Suvorkin YA.V., Tabolenko V.A., Tanaev A.B., Tarashchanskii B.A., Ternovoi M.Yu., Tkachev L.G., Tluzhikont M, Ushakov N.A., Khorns D., Chernov D.V., Yashin I.I. Izuchenie kosmicheskikh luchei na astrofizicheskom komplekse TAIGA: rezul'taty i plany // ZhETF. 2022. V. 161, N 4. P. 548−559. DOI: 10.31857/ S0044451022040095.
2. Astapov I.I., Bez"yazykov P.A., Blank M., Bonvech E.A., Borodin A.N., Bryukner M., Budnev N.M., Bulan A.V., Vaidyanatan A., Vishnevskii R., Volkov Budnev N.M., Kuz'michev L.A., Astapov I.I., Bez"yazykov P.A., Bonvech E.A., Borodin A.N., Bulan A.V., Vaidyanatan A., Volkov N.V., Volchugov P.A., Voronin D.M., Gafarov A.R., Garmash A.YU., Grebenyuk V.M., Gress' O.A., Gress' T.I., Gres' E.O., Grinyuk A.A., Grishin O.G., Dyachok A.N., ZHurov D.P., Zagorodnikov A.V., Ivanova A.D., Ivanova A.L., Ilyushin M.A., Kalmykov N.N., Kindin V.V., Kiryukhin S.N., Kozhin V.A., Kokoulin R.P., Kolosov N.I., Kompaniets K.G., Korosteleva E.E., Kozhin V.A., Kravchenko E.A., Kryukov A.P., K'yavassa A., Lavrova M.V., Lagutin A.A., Lemeshev E.YU., Lubsandorzhiev B.K., Lubsandorzhiev N.B., Malakhov S.D., Mirgazov R.R., Monkhoev R.D., Okuneva E.A., Osipova E.A., Pan A., Panov A.D., Pan'kov L.V., Pakhorukov A.L., Petrukhin A.A., Podgrudkov D.A., Popova E.G., Postnikov E.B., Prosin V.V., Ptuskin V.S., Pushnin A.A., Raikin R.I., Razumov A.V., Rubtsov G.I., Ryabov E.V., Satyshev I., Samoliga V.S., Sveshnikova L.G., Sidorenkov A.Yu., Silaev A.A., Silaev A.A. (ml.), Skurikhin A.V., Sokolov A.V., Tabolenko V.A., Tanaev A.B., Ternovoi M.Yu., Tkachev L.G., Ushakov N.A., Chernov D.V., Yashin I.I. TAIGA – gibridnyi kompleks dlya mnogokanal'noi astronomii vysokikh energii // Zhurn. tekhn. fiz. 2023. V. 93, N 12. P. 1794–1798. DOI: 10.61011/JTF.2023.12.56824.f234-23.
3. Fruck C., Gaug M., Hahn A., Acciari V., Besenrieder J., Prester D.D., Dorner D., Fink D., Font L., Mićanović S., Mirzoyan R., Müller D., Pavletić L., Schmuckermaier F., Willet M. Characterizing the aerosol atmosphere above the Observatorio del Roque de los Muchachos by analysing seven years of data taken with an GaAsP HPD-readout, absolutely calibrated elastic LIDAR // Mon. Not. Roy. Astron. Soc. 2022. V. 515, N 3. P. 4520–4550. DOI: 10.1093/mnras/stac1563.
4. Schmuckermaier F., Gaug M., Fruck C., Moralejo A., Hahn A., Prester D.D., Dorner D., Font L., Mićanović S., Mirzoyan R., Paneque D., Pavletić L., Sitarek J., Will M. Correcting Imaging Atmospheric Cherenkov Telescope data with atmospheric profiles obtained with an elastic light detecting and ranging system // Astron. Astrophys. 2023. V. 673, N A2. DOI: 10.1051/0004-6361/202245787.
5. Zhuravleva T.B., Kabanov D.M., Sakerin S.M. O dnevnoi izmenchivosti aerozol'noi opticheskoi tolshchi atmosfery i radiatsionnogo forsinga aerozolya // Optika atmosf. i okeana. 2010. V. 23, N 8. P. 700–709; Zhuravleva T.B., Kabanov D.M., Sakerin S.M. On daytime variations of atmospheric aerosol optical depth and aerosol radiative forcing // Atmos. Ocean. Opt. 2010. V. 23, N 6. P. 528–537.
6. Kabanov D.M., Beresnev S.A., Gorda S.Yu., Kornienko G.I., Nikolashkin S.V., Sakerin S.M., Tashchilin M.A. O dnevnoi izmenchivosti aerozol'noi opticheskoi tolshchi atmosfery i radiatsionnogo forsinga aerozolya // Optika atmosf. i okeana. 2013. V. 26, N 4. P. 291–296; Kabanov D.M., Beresnev S.A., Gorda S.Yu., Kornienko G.I., Nikolashkin S.V., Sakerin S.M., Tashchilin M.A. Diurnal behavior of aerosol optical depth of the atmosphere in a few regions of Asian part of Russia // Atmos. Ocean. Opt. 2013. V. 26, N 6. P. 466–472.
7. Hyndman R.J., Athanasopoulos G. Seasonal ARIMA models // Forecasting: Principles and practice, 3rd edition. Melbourne, Australia: OTexts, 2021. [Электронный ресурс]. URL: http://otexts.com/fpp3/seasonal-arima.html (last access: 01.04.2025).
8. Hollmann N., Müller S., Purucker L., Krishnakumar A., Körfer M., Hoo S.B., Schirrmeister R.T., Hutter F. Accurate predictions on small data with a tabular foundation model // Nature. 2025. V. 637. P. 319–326. DOI: 10.1038/s41586-024-08328-6.
9. Bey I., Jacob D.J., Yantosca R.M., Logan J.A., Field B.D., Fiore A.M., Li Q., Liu H.Y., Mickley L.J., Schultz M.G. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation // J. Geophys. Res. 2001. V. 106(D19). P. 23073–23095. DOI: 10.1029/2001JD000807.
10. Eastham S.D., Long M.S., Keller C.A., Lundgren E., Yantosca R.M., Zhuang J., Li C., Lee C.J., Yannetti M., Auer B.M., Clune T.L., Kouatchou J., Putman W.M., Thompson M.A., Trayanov A.L., Molod A.M., Martin R.V., Jacob D.J. GEOS-Chem High Performance (GCHP v11-02c): A next-generation implementation of the GEOS-Chem chemical transport model for massively parallel applications // Geosci. Model Dev. 2018. V. 11, N 7. P. 2941–2953. DOI: 10.5194/gmd-11-2941-2018.
11. Keller C.A., Long M.S., Yantosca R.M., Da Silva A.M., Pawson S., Jacob D.J. HEMCO v1.0: A versatile, ESMF-compliant component for calculating emissions in atmospheric models // Geosci. Model Dev. 2014. V. 7, N 4. P. 1409–1417. DOI: 10.5194/gmd-7-1409-2014.
12. Park R.J., Jacob D.J., Field B.D., Yantosca R.M., Chin M. Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy // J. Geophys. Res. 2004. V. 109, N D15. DOI: 10.1029/2003JD004473.
13. Pye H.O.T., Liao H., Wu S., Mickley L.J., Jacob D.J., Henze D.K., Seinfeld J.H. Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol levels in the United States // J. Geophys. Res. 2009. V. 114, N D1. DOI: 10.1029/2008JD010701.
14. Heald C.L., Ridley D.A., Kroll J.H., Barrett S.R.H., Cady-Pereira K.E., Alvarado M.J., Holmes C.D. Contrasting the direct radiative effect and direct radiative forcing of aerosols // Atmos. Chem. Phys. 2014. V. 14, N 11. P. 5513–5527. DOI: 10.5194/acp-14-5513-2014.
15. Inness A., Ades M., Agustí-Panareda A., Barré J., Benedictow A., Blechschmidt A.-M., Dominguez J.J., Engelen R., Eskes H., Flemming J., Huijnen V., Jones L., Kipling Z., Massart S., Parrington M., Peuch V.-H., Razinger M., Remy S., Schulz M., Suttie M. The CAMS reanalysis of atmospheric composition // Atmos. Chem. Phys. 2019. V. 19, N 6. P. 3515–3556. DOI: 10.5194/ acp-19-3515-2019.
16. Flemming J., Huijnen V., Arteta J., Bechtold P., Beljaars A., Blechschmidt A.-M., Diamantakis M., Engelen R.J., Gaudel A., Inness A., Jones L., Josse B., Katragkou E., Marecal V., Peuch V.-H., Richter A., Schultz M.G., Stein O., Tsikerdekis A. Tropospheric chemistry in the Integrated Forecasting System of ECMWF // Geosci. Model Dev. 2015. V. 8. P. 975–1003. DOI: 10.5194/gmd-8-975-2015.
17. Bannister R.N. A review of operational methods of variational and ensemble-variational data assimilation // Q. J. R. Meteorol. Soc. 2017. V. 143. P. 607–633. DOI: 10.1002/qj.2982.
18. Morcrette J.-J., Boucher O., Jones L., Salmond D., Bechtold P., Beljaars A., Benedetti A., Bonet A., Kaiser J.W., Razinger M., Schulz M., Serrar S., Simmons A.J., Sofiev M., Suttie M., Tompkins A.M., Untch A. Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: Forward modeling // J. Geophys. Res. 2009. V. 114(D6). DOI: 10.1029/2008JD011235.
19. Holben B.N., Eck T.F., Slutsker I., Tanré D., Buis J.P., Setzer A., Vermote E., Reagan J.A., Kaufman Y.J., Nakajima T., Lavenu F., Jankowiak I., Smirnov A. AERONET – a federated instrument network and data archive for aerosol characterization // Remote Sens. Environ. 1998. V. 66, N 1. P. 1–16. DOI: 10.1016/S0034-4257(98)00031-5.
20. Anderson J.M., Becker K.J., Kieffer H.H., Dodd D.N. Real-time control of the Robotic Lunar Observatory Telescope // Pub. Astron. Soc. Pac. 1999. V. 111. P. 737–749. DOI: 10.1086/316375.
21. Barreto A., Cuevas E., Damiri B., Guirado C., Berkoff T., Berjón A.J., Hernández Y., Almansa F., Gil M. A new method for nocturnal aerosol measurements with a lunar photometer prototype // Atmos. Meas. Tech. 2013. V. 6, N 3. P. 585–598. DOI: 10.5194/amt-6-585-2013.
22. Smirnov A., Holben B.N., Eck T.F., Dubovik O., Slutsker I. Cloud-screening and quality control algorithms for the AERONET database // Remote Sens. Environ. 2000. V. 73, N 3. P. 337–349. DOI: 10.1016/S0034-4257(00)00109-7.
23. Pai S.J., Heald C.L., Pierce J.R., Farina S.C., Marais E.A., Jimenez J.L., Campuzano-Jost P., Nault B.A., Middlebrook A.M., Coe H., Shilling J.E., Bahreini R., Dingle J.H., Vu K. An evaluation of global organic aerosol schemes using airborne observations // Atmos. Chem. Phys. 2020. V. 20, N 5. P. 2637–2665. DOI: 10.5194/acp-20-2637-2020.
24. Li S., Garay M.J., Chen L., Rees E., Liu Y. Comparison of GEOS-Chem aerosol optical depth with AERONET and MISR data over the contiguous United States // J. Geophys. Res. Atmos. 2013. V. 118, N 19. P. 11228–11241. DOI: 10.1002/jgrd.50867.