Vol. 38, issue 05, article # 4

Sosnin E. A., Panarin V. A., Skakun V. S., Sorokin D. A. The hypothesis of transient light events in the mesosphere of Venus. // Optika Atmosfery i Okeana. 2025. V. 38. No. 05. P. 353–357. DOI: 10.15372/AOO20250504 [in Russian].
Copy the reference to clipboard

Abstract:

Observations of the state of the mesosphere of Venus from spacecraft have not yet revealed transient luminous events similar to those observed in the Earth's atmosphere. In this work, a possibility of such phenomena is proved in laboratory conditions. For this purpose, an experiment was conducted on the formation of apokamps in carbon dioxide at various pressure values. The results confirm the hypothesis that conditions at altitudes corresponding to the upper edge of clouds in the atmosphere of Venus are favorable for the generation of analogues of transients of the Earth's mesosphere. Based on this, recommendations have been developed for the design of detection systems for such phenomena from orbiting satellites or balloons.

Keywords:

apokamp discharge, Venus mesosphere, transient light event, spectral equipment

References:

1. Donchenko V.A., Kabanov M.V., Kaul' B.V., Nagorskii P.M., Samokhvalov I.V. Elektroopticheskie yavleniya v atmosfere: ucheb. posobie. Tomsk: Izd-vo NTL, 2015. 316 p.
2. Surkov V.V., Hayakawa M. Progress in the study of transient luminous and atmospheric events: A review // Surv. Geophys. 2020. V. 41. P. 1101–1142. DOI: 10.1007/s10712-020-09597-2.
3. Khrenov B.A., Garipov G.K., Zotov M.Yu., Klimov P.A., Panasyuk M.I., Petrov V.L., Sharakin S.A., Shirokov A.V., Yashin I.V., Grebenyuk V.M., Grinyuk A.A., Lavrova M.V., Tkachenko A.V., Tkachev L.G., Botvinko A.A., Saprykin O.A., Sen'kovskii A.N., Puchkov A.E. Issledovanie vspyshek izlucheniya atmosfery v oblasti blizhnego ul'trafioleta s pomoshch'yu detektora TUS na bortu sputnika Lomonosov // Kosmicheskie issledovaniya 2020. V. 58, N 5. P. 355‒368. DOI: 10.31857/S0023420620050052.
4. Sosnin E.A., Babaeva N.Yu., Kozyrev A.V., Kozhevnikov V.Yu., Naidis G.V., Panarin V.A., Skakun V.S., Tarasenko V.F. Modelirovanie tranzientnykh svetovykh yavlenii srednei atmosfery Zemli s pomoshch'yu apokampicheskogo razryada // Uspekhi fiz. nauk. 2021. V. 191, N 2. P. 199–219. DOI: 10.3367/UFNr.2020.03.038735.
5. Sosnin E.A., Kuznetsov V.S., Panarin V.A., Skakun V.S., Tarasenko V.F., Ivlev G.A., Kozlov A.V. Formirovanie okislov azota v laboratornom razryade, imitiruyushchem golubye strui // Optika atmosf. i okeana. 2020. V. 33, N 12. P. 958‒961. DOI: 10.15372/AOO20201209.
6. Sosnin E.A., Kuznetsov V.S., Panarin V.A., Skakun V.S., Tarasenko V.F. Gipoteza o razlichiyakh startovykh uslovii dlya kratkovremennykh svetovykh yavlenii srednei atmosfery // Optika atmosf. i okeana. 2021. V. 34, N 2. P. 148‒151. DOI: 10.15372/AOO20210210.
7. Sosnin E.A., Kuznetsov V.S., Panarin V.A. Energovydelenie v grozovom oblake, neobkhodimoe dlya obrazovaniya tranzientnykh svetovykh yavlenii srednei atmosfery // Optika atmosf. i okeana. 2021. V. 34, N 8. P. 1‒4. DOI: 10.15372/AOO202108; Sosnin E.A., Kuznetsov V.S., Panarin V.A. Energy release in a thundercloud necessary for the formation of middle atmosphere transient light phenomena // Atmos. Ocean. Opt. 2021. V. 34, N 6. P. 722–725.
8. Siingh D., Singh R.P., Kumar S., Dharmaraj T., Singh A.K., Patil M.N., Singh Sh. Lightning and middle atmospheric discharges in the atmosphere // J. Atmos. Sol.-Terr. Phys. 2015. V. 134. P. 78–101. DOI: 10.1016/j.jastp.2015.10.001.
9. Lorenz R.D. Lightning detection on Venus: A critical review // Prog. Earth Planet. Sci. 2018. V. 5. 34 p. DOI: 10.1186/s40645-018-0181-x.
10. Moroz V.I. Atmosfera Venery // Uspekhi fiz. nauk. 1971. V. 104, N 2. P. 255–296. DOI: 10.3367/UFNr.0104.197106c.0255.
11. Johnson N.M., de Oliveira M.R.R. Venus atmospheric composition in situ data: A compilation // Earth Space Sci. 2019. V. 6, N 7. P. 1299‒1318. DOI: 10.1029/2018EA000536.
12. Robledo-Martinez A., Garcia-Villarreal A., Sobral H. Comparison between low-pressure laboratory discharges and atmospheric sprites // J. Geophys. Res.: Space Phys. 2017. V. 122, N 1. P. 948‒962. DOI: 10.1002/2016JA023519.
13. Chanrion O., Neubert T., Mogensen A., Yair Y., Stendel M., Singh R., Siingh D. Profuse activity of blue electrical discharges at the tops of thunderstorms // Geophys. Res. Lett. 2017. V. 44. P. 496–503. DOI: 10.1002/2016GL071311.
14. Borucki W.J., McKay C.P., Jebens D., Lakkaraju H.S., Vanajakshi C.T. Spectral irradiance measurements of simulated lightning in planetary atmospheres // Icarus. 1996. V. 123. P. 336–344. DOI: 10.1006/icar.1996.0162.
15. Huestis D.L., Slanger T.G. New perspectives on the Venus nightglow // J. Geophys. Res.: Planets. 1993. V. 98, N E6. P. 10839–10847. DOI: 10.1029/93JE00997.
16. Petropoulos B. Physical parameters of the atmosphere of Venus // Earth Moon Planet. 1988. V. 42. P. 29–40. DOI: 10.1007/BF00118037.
17. Malkin E.I., Kazakov E.A., Sannikov D.V., Cherneva N.V., Marchenko L.S., Druzhin G.I. Statisticheskaya svyaz' mezhdu vistlerami i spraitami po dannym AWDANET i WWLLN // Vestn. KRAUNTS. Fiz.-mat. nauki. 2022. V. 41, N 4. P. 178‒190. DOI: 10.26117/2079-6641-2022-41-4-178-190.
18. Russell C.T., Zhang T.L., Wei H.Y. Whistler mode waves from lightning on Venus: Magnetic control of ionospheric access // J. Geophys. Res.: Atmos. 2013. V. 113. E00B05. DOI: 10.1029/2012GL054308.
19. Imamura T., Higuchi T., Maejima Y., Takagi M., Sugimoto N., Ikeda K., Ando H. Inverse insolation dependence of Venus’ cloud-level convection // Icarus. 2014. V. 228. P. 181–188. DOI: 10.1016/j.icarus.2013.10.012.
20. Suszcynsky D.M., Kirkland M.W., Jacobson A.R., Fanz R.C., Knox S.O., Guillen J.L.L., Green J.L. FORTE observations of simultaneous VHF and optical emissions from lightning: Basic phenomenology // J. Geophys. Res.: Atmos. 2000. V. 105(D2). P. 2191–2201. DOI: 10.1029/1999jd900993.