Vol. 38, issue 04, article # 8

Bobrovnikov S. M., Gorlov E. V., Zharkov V. I., Zaitsev N. G. Laser triggering system for dual-pulse laser diagnostics. // Optika Atmosfery i Okeana. 2025. V. 38. No. 04. P. 302–307. DOI: 10.15372/AOO20250408 [in Russian].
Copy the reference to clipboard

Abstract:

The two-pulse synchronous excitation method used for remote laser diagnostics of matter has recently attracted great interest, since it significantly expands the capabilities of traditional methods of single-pulse laser action. However, the practical implementation of the method requires strict synchronization of the instants of sending laser pulses and automated control of their time positions. Obviously, the two-pulse excitation scheme needs in more complex equipment and complicates the application of the method. The use of standard laser trigger and control tools is expensive and cumbersome and not always applicable. The article presents the specialized system for triggering laser pulses with a capability of recording the shape and position of excitation pulses with their subsequent display on a single time scale. A structural diagram and technical characteristics of the device are given. An example of using the laser trigger system to ensure the operation of a research stand for remote laser detection of organophosphorus compounds by the two-pulse laser fragmentation method of laser-induced fluorescence (LF/LIF method) is described. The developed synchronization system can be used in optical diagnostic methods, where synchronous action of two or more independent laser sources is required, to set and control the time delay between their optical pulses.

Keywords:

laser triggering, laser fragmentation, phosphorus oxide, PO fragments, laser-induced fluorescence

Figures:

References:

1. Diwakar P.K., Harilal S.S., Freeman J.R., Hassanein A. Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy // Spectrochim. Acta Part B: Atomic Spectrosc. 2013. V. 87. P. 65–73. DOI: 10.1016/j.sab.2013.05.015.
2. Qiu Y., Guo X., Shi M., Zhou Y., Wu J., Li J., Sun H., Zhang Z., Hang Y., Li X., Li Y. Plasma dynamics and chlorine emission characteristics on cement pastes using collinear dual-pulse laser-induced breakdown spectroscopy // Spectrochim. Acta Part B: Atomic Spectrosc. 2023. V. 209. P. 106799. DOI: 10.1016/j.sab.2023.106799.
3. Zhang Z., Wu J., Hang Y., Zhou Y., Tang Z., Shi M., Qiu Y., Liao K., Liu T., Li X. Quantitative analysis of chlorine in cement pastes based on collinear dual-pulse laser-induced breakdown spectroscopy // Spectrochim. Acta Part B: Atomic Spectrosc. 2022. V. 191. P. 106392. DOI: 10.1016/j.sab.2022.106392.
4. Li Y., Tian D., Ding Y., Yang G., Liu K., Wang C., Han X. A review of laser-induced breakdown spectroscopy signal enhancement // Appl. Spectrosc. Rev. 2017. V. 53, N 1. P. 1–35. DOI: 10.1080/05704928.2017.1352509.
5. Tognoni E., Cristoforetti G. Basic mechanisms of signal enhancement in ns double-pulse laser-induced breakdown spectroscopy in a gas environment // J. Anal. At. Spectromim. 2014. V. 29, N 8. P. 1318–1338. DOI: 10.1039/C4JA00033A.
6. Peng J., Liu F., Zhou F., Song K., Zhang C., Ye L., He Y. Challenging applications for multi-element analysis by laser-induced breakdown spectroscopy in agriculture: A review // TrAC Trends Anal. Chem. 2016. V. 85. P. 260–272. DOI: 10.1016/j.trac.2016.08.015.
7. Cristoforetti G., Legnaioli S., Palleschi V., Pardini L., Salvetti A., Tognoni E. On the enhancement of laser induced breakdown spectroscopy signal in double pulse configuration // Proc. SPIE. 2006. N 628406. DOI: 10.1117/12.714161.
8. Pearman W., Scaffidi J., Angel S.M. Dual-pulse laser-induced breakdown spectroscopy in bulk aqueous solution with an orthogonal beam geometry // Appl. Opt. 2003. V. 42, N 30. P. 6085–6093. DOI: 10.1364/AO.42.006085.
9. Rai V.N., Yueh F.Y., Singh J.P. Time-dependent single and double pulse laser-induced breakdown spectroscopy of chromium in liquid // Appl. Opt. 2008. V. 47, N 31. P. G21–G29. DOI: 10.1364/AO.47.000G21.
10. Rai V.N., Yueh F.Y., Singh J.P. Theoretical model for double pulse laser-induced breakdown spectroscopy // Appl. Opt. 2008. V. 47, N 31. P. G30–G37. DOI: 10.1364/AO.47.000G30.
11. Skrodzki P.J., Becker J.R., Diwakar P.K., Harilal S.S., Hassanein A. A comparative study of single-pulse and double-pulse laser-induced breakdown spectroscopy with uranium-containing samples // Appl. Spectrosc. 2016. V. 70, N 3. P. 467–473. DOI: 10.1177/0003702815626670.
12. Cui M., Deguchi Y., Wang Z., Tanaka S., Fujita Y., Zhao S. Improved analysis of manganese in steel samples using collinear long-short double pulse Laser-Induced Breakdown Spectroscopy (LIBS) // Appl. Spectrosc. 2018. V. 73, N 2. P. 152–162. DOI: 10.1177/0003702818803943.
13. Sausa R.C., Miziolek A.W., Long S.R. State distributions, quenching, and reaction of the phosphorus monoxide radical generated in excimer laser photofragmentation of dimethyl methylphosphonate // J. Phys. Chem. 1986. V. 90. P. 3994–3998.
14. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Panchenko Yu.N., Puchikin A.V. Two-pulse laser fragmentation/laser-induced fluorescence of nitrobenzene and nitrotoluene vapors // Appl. Opt. 2019. V. 58, N 27. P. 7497–7502. DOI: 10.1364/AO.58.007497.
15. Long S.R., Sausa R.C., Miziolek A.W. Lif studies of PO produced in excimer laser photolysis of dimethyl methyl phosphonate // Chem. Phys. Lett. 1985. V. 117, N 5. P. 505–510. DOI: 10.1016/0009-2614(85)80291-8.
16. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Murashko S.N. Dvuhimpul'snaya lazernaya fragmentatsiya/lazerno-indutsirovannaya fluorestsentsiya aerozolya organofosfata // Optika atmosf. i okeana. 2024. V. 37, N 7. P. 609–614. DOI: 10.15372/AOO20240710; Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Murashko S.N. Two-pulse laser fragmentation/laser-induced fluorescence of organophosphate aerosol // Atmos. Ocean. Opt. 2024. V. 37, N 5. P. 732–737.
17. Karasev N.V., Troitskii V.O., Dimaki V.A., Trigub M.V. Sistema vozbuzhdeniya aktivnyh sred na parah metallov dlya realizatsii netipichnyh rezhimov generatsii // Optika atmosf. i okeana. 2024. V. 37, N 8. P. 699–704. DOI: 10.15372/AOO20240810.
18. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Murashko S.N. Lazerno-indutsirovannaya fluorestsentsiya produktov fotodissotsiatsii trietilfosfata v kapel'no-zhidkom sostoyanii na poverhnosti // Optika atmosf. i okeana. 2025. В печати.
19. Panchenko Y., Puchikin A., Yampolskaya S., Bobrovnikov S., Gorlov E., Zharkov V. Narrowband KrF laser for lidar systems // IEEE J. Quantum. Electron. 2021. V. 57, N 2. P. 1–5. DOI: 10.1109/JQE.2021.3049579.