Vol. 38, issue 04, article # 5
Copy the reference to clipboard
Abstract:
The NH Earth polar stratospheric vortex significantly varies from year to year in winter, which periodically lead to the occurrence of sudden stratospheric warmings (SSWs). Such events significantly disturb the circulation and chemical composition of the polar stratosphere. Our understanding of the wave processes that are recorded in the stratosphere and are directly involved in the occurrence of SSWs remains incomplete to date. Oscillations of the polar stratosphere of the Northern Hemisphere in the period from 1979 to 2023 are studied based on ERA5 reanalysis data. The method of current spectra is used to study the variability of the periodicity of wave processes in the polar stratosphere for different time intervals. As the main indicator of the wave properties of the stratosphere, we use the field of the vertical component of the wind speed in the region between 60 and 90° N. It is shown that in some years, oscillations of the stratosphere coincide with or are close to the periods of the main waves of the fortnightly and monthly lunar gravitational tide. The causes and consequences of the oscillatory processes synchronization in the polar stratosphere with the lunar gravitational tide are discussed. The results can be useful for improving the understanding of the mechanisms of occurrence of SSWs, as well as for improving the forecast of such events.
Keywords:
middle atmosphere, sudden stratospheric warming, polar stratospheric vortex, atmospheric free oscillations, lunar gravity tide
Figures:
References:
1. Scherhag R. Die explosionsartigen Stratospherenerwarmingen des Spatwinters, 1951–1952 // Ber. Deut. Wetterd. 1952. N 6. P. 51–63.
2. Baldwin M.P., Ayarzaguena B., Birner T., Butchart N., Butler A.H., Charlton-Perez A.J., Domeisen D.I.V., Garfinkel Ch.I., Garny H., Gerber E.P., Hegglin M.I., Langematz U., Pedatella N.M. Sudden stratospheric warmings // Rev. Geophys. 2021. V. 59. P. e2020RG000708. DOI: 10.1029/2020RG000708.
3. Zorkaltseva O.S., Vasilyev R.V. Stratospheric influence on MLT over mid-latitudes in winter by Fabry–Perot interferometer data // Ann. Geophys. 2021. V. 39. P. 267–276. DOI: 10.5194/angeo-39-267-2021.
4. Yasyukevich A.S., Chernigovskaya M.A., Shpynev B.G., Khabituev D.S., Yasyukevich Y.V. Features of winter stratosphere small-scale disturbance during sudden stratospheric warmings // Remote Sens. 2022. V. 14. P. 2798. DOI: 10.3390/rs14122798.
5. Klimenko M.V., Klimenko V.V., Koren’kov Yu.N., Bessarab F.S., Karpov I.V., Ratovsky K.G., Chernigovskaya M.A. Modeling of response of the thermosphere–ionosphere system to sudden stratospheric warmings of years 2008 and 2009 // Cosmic Res. 2013. V. 51, N 1. P. 54–63.
6. Pancheva D., Mukhtarov P. Stratospheric warmings: The atmosphere–ionosphere coupling paradigm // J. Atmos. Sol.-Terr. Phys. 2011. V. 73, N 113. P. 1697–1702. DOI: 10.1016/j.jastp.2011.03.006.
7. Pedatella N. Ionospheric variability during the 2020–2021 SSW: COSMIC-2 observations and WACCM-X simulations // Atmosphere. 2022. V. 13, N 3. Article 368. DOI: 10.3390/atmos13030368.
8. Siddiqui T.A., Yamazaki Y., Stolle C., Maute A., Laštovička J., Edemskiy I.K. Understanding the total electron content variability over Europe during 2009 and 2019 SSWs // J. Geophys. Res.: Space Phys. 2021. V. 126. P. e2020JA028751. DOI: 10.1029/2020JA028751.
9. Butchart N. The Brewer-Dobson circulation // Rev. Geophys. 2014. V. 52. P. 157–184. DOI: 10.1002/2013RG000448.
10. Lawrence Z., Perlwitz J., Butler A., Manney G., Newman P., Lee S., Nash E. The remarkably strong arctic stratospheric polar vortex of winter 2020: Links to recordbreaking Arctic oscillation and ozone loss // J. Geophys. Res. 2020. V. 125. DOI: 10.1029/2020JD033271.
11. Butler A.H., Sjoberg J.P., Seidel D.J., Rosenlof K.H. A sudden stratospheric warming compendium // Earth Syst. Sci. Data. 2017. V. 9. P. 63–76. DOI: 10.5194/essd-9-63-2017.
12. Zorkal'tseva O.S., Antokhina O.Yu., Antokhin P.N. Dolgovremennaya izmenchivost' parametrov vnezapnykh stratosfernykh potepleniy po dannym reanaliza ERA5 // Optika atmosf. i okeana. 2023. V. 3, N 36. P. 200–208. DOI: 10.15372/AOO20230306; Zorkaltseva O.S., Antokhina O.Yu., Antokhin P.N. Long-term variations in parameters of sudden stratospheric warmings according to ERA5 reanalysis data // Atmos. Ocean. Opt. 2023. V. 36, N 4. P. 370–378.
13. Mordvinov V.I., Latysheva I.V. Teoriya obshchey tsirkulyatsii atmosfery, izmenchivost' krupnomasshtabnykh dvizheniy. M.: Izd-vo IGU, 2013. 193 p.
14. Holton J.R., Tan H.-C. The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb // J. Atmos. Sci. 1980. V. 37. P. 2200–2208. DOI: 10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2.
15. Anstey J.A., Osprey S.M., Alexander J., Baldwin M., Butchart N., Gray L., Kawatani Y., Newman P., Richter J. Impacts, processes and projections of the quasi-biennial oscillation // Nat. Rev. Earth Environ. 2022. V. 3. P. 588–603. DOI: 10.1038/s43017-022-00323-7.
16. Domeisen D.I., Garfinkel C.I., Butler A.H. The teleconnection of El Nino Southern Oscillation to the stratosphere // Rev. Geophys. 2019. V. 57. P. 5–47. DOI: 10.1029/2018RG000596.
17. Koval' A.V., Gavrilov N.M., Golovko A.G., Didenko K.A., Ermakova T.S. Modelirovanie vliyaniya variatsiy solnechnoy aktivnosti na global'nuyu atmosfernuyu tsirkulyatsiyu // Solnechno-zemnaya fizika. 2024. V. 10, N 2. P. 119–126. DOI: 10.12737/szf-102202411.
18. Salminen A., Asikainen T., Maliniemi V., Mursula K. Dependence of sudden stratospheric warmings on internal and externaldrivers // Geophys. Res. Lett. 2020. V. 47. P. e2019GL086444. DOI: 10.1029/2019GL086444.
19. Pogoreltsev A., Savenkova E., Aniskina O., Ermakova T., Chen W., Wei K. Interannual and intraseasonal variability of stratospheric dynamics and stratosphere-troposphere coupling during northern winter // J. Atmos. Sol.-Terr. Phys. 2015. V. 136. P. 187–200. DOI: 10.1016/j.jastp.2015.08.008.
20. Chepmen S., Lindzen R. Atmosfernye prilivy. M.: Mir, 1972. 292 p.
21. Sidorenkov N.S., Fizika nestabil'nostey vrashcheniya Zemli. M.: Fizmatlit, 2002. 384 p.
22. Pertsev N., Dalin P. Lunar semimonthly signal in cloudiness: Lunar-phase or lunar-declination effect? // J. Atmos. Sol.-Terr. Phys. 2010. V. 72. P. 713–717. DOI: 10.1016/j.jastp.2010.03.013.
23. Forbes J.M., Zhang X., Bruinsma S., Oberheide J. Lunar semidiurnal tide in the thermosphere under solar minimum conditions // J. Geophys. Res.: Space Phys. 2013. V. 118. DOI: 10.1029/2012JA017962.
24. Avsyuk Yu.N. Prilivnye sily i prirodnye protsessy. M.: OIFZ RAN, 1996. 188 p.
25. Forbes J.M., Zhang X. Lunar tide amplification during the January 2009 stratosphere warming event: Observations and theory // J. Geophys. Res. 2012. V. 117. P. A12312. DOI: 10.1029/2012JA017963.
26. Yamazaki Y. Solar and lunar ionospheric electrodynamic effects during stratospheric sudden warmings // J. Atmos. Sol.-Terr. Phys. 2014. V. 119. P. 138–146. DOI: 10.1016/j.jastp.2014.08.001.
27. Kumar S., Siddiqui T.A., Stolle C., Pedatella N.M., Pallamraju D. Impact of strong and weak stratospheric polar vortices on geomagnetic semidiurnal solar and lunar tides // Earth Planets Space. 2023. V. 75. DOI: 10.1186/s40623-023-01810-x.
28. Hersbach H., Bell B., Berrisford P., Hirahara S., Horanyi A., Munoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D. The ERA5 global reanalysis // Q. J. R. Meteorol. Soc. 2020. V. 146. P. 1999–2049. DOI: 10.1002/qj.3803.
29. Baldwin M.P., Hirooka T., O’Neil A., Yoden S. Major stratospheric warming in the Southern Hemisphere in 2002: Dynamical aspects of the ozone hole split // SPARC Newslett. 2003. V. 20. P. 24–26.
30. Rao J., Garfinkel C.I., White I.P., Schwartz C. The Southern Hemisphere minor sudden stratospheric warming in September 2019 and its predictions in S2S models // J. Geophys. Res.: Atmos. 2020. V. 125. P. e2020JD032723. DOI: 10.1029/ 2020JD032723.
31. Savel'eva E.S. Dinamika antarkticheskogo polyarnogo vikhrya vo vremya vnezapnogo stratosfernogo potepleniya v 2002 year // Optika atmosf. i okeana. 2020. V. 33, N 1. P. 50–55. DOI: 10.15372/ AOO20200107.
32. Shpynev B.G., Churilov S.M., Chernigovskaya M.A. Generation of waves by jet stream instabilities in winter polar stratosphere/mesosphere // J. Atmos. Sol.-Terr. Phys. 2015. V. 136. P. 201–215. DOI: 10.1016/j.jastp.2015.07.005.
33. Khabituev D.S., Shpynev B.G. Tsirkulyatsionnye struktury v polyarnoy stratosfere Severnogo polushariya vo vremya zim 2019–2021 years // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2023. V. 20, N 5. P. 307–316.
34. Kharkevich A.A. Spektry i analiz. M.: GIFML, 1962. 236 p.
35. Orlov I.I., Il'in N.V. O tekushchikh spektrakh signalov // Radiolokatsiya. Navigatsiya. Svyaz'. Voronezh: Izd-vo VGU, 2000. V. 1. P. 361–365.
36. Kuznetsov A.P., Kuznetsov S.P., Ryskin N.M. Nelineynye kolebaniya. M.: Fizmatlit, 2002. 292 p.