Vol. 38, issue 04, article # 10

Sokovikov V. G., Kuryak A. N., Shiyanov D. V. Photodissociation lasers at resonance transitions of alkali metals. Part 2. Photodissociation generation of stimulated emission at the first resonance transitions of Na and K atoms. // Optika Atmosfery i Okeana. 2025. V. 38. No. 04. P. 314–319. DOI: 10.15372/AOO20250410 [in Russian].
Copy the reference to clipboard

Abstract:

Alkali metal halide photodissociation lasers emit at the first resonance transitions of atoms. This allows using such lasers for the analysis of a number of metals in gaseous media by the absorption and resonance fluorescence method. In the first part of the work, the general principles and mechanisms of creating inversion at resonance transitions of alkali metal atoms during photodissociation of their halide molecules are considered. Data on wavelengths at the first resonance transitions of alkali metal atoms (Li, Na, R, Rb, Cs) are systematized. The main processes responsible for the formation of the spectral contour of resonance generation lines of photodissociation lasers are determined. Some features of the application of such lasers for sounding gaseous media are noted. The results can be used in the study of photodissociation generation at the first resonance transitions of alkali metal atoms.

Keywords:

alkali metal halide, resonance transition, photodissociation, photodissociation laser, optical pumping

References:

1. Ehrlich D.J., Osgood R.M. Metal-atom resonance-line lasers // IEEE J. Quantum Electron. 1980. V. 16, N 5. P. 380–392.
2. Ehrlich D.J., Osgood R.M. Alkali-metal resonance-line lasers based on photodissociation // Appl. Phys. Lett. 1979. V. 34, N 10. P. 656–658.
3. Shahdin S., Ludewigt K., Wellegehausen B. Photodissociative generation of population inversion in alkali noble gas excimer system // IEEE J. Quantum Electron. 1981. V. 17, N 7. P. 1276–1280.
4. White J.C. Inversion of the Na resonance line by selective photodissociation of NaI // Appl. Phys. Lett. 1978. V. 33, N 4. P. 325–327.
5. Maya J. Quantum efficiency of fluorescence excited by photodissociation in metal halide vapors and applications // IEEE. J. Quantum Electron. 1979. V. 15, N 7. P. 579–594.
6. Babichev A.P., Babushkina N.A., Bratkovskij A.M., Brodov M.E., Bystrov M.V. Fizicheskie velichiny: Spravochnik / pod red. I.S. Grigor'eva, E.Z. Mejlihova. M.: Energoatomizdat, 1991. 1232 p.
7. H'yuber K.-P., Gercberg G. Konstanty dvuhatomnyh molekul: spravochnik. Pt. 2: Molekuly N2–ZrO. M.: Mir, 1984. 365 p.
8.  H'yuber K.-P., Gercberg G. Konstanty dvuhatomnyh molekul: spravochnik. Pt. 1: Molekuly Ag2–MoO. M.: Mir, 1984. 408 p.
9. Radcig A.A., Smirnov B.M. Parametry atomov i atomnyh ionov. Spravochnik. 2-e izd. M.: Energoatomizdat, 1986. 344 p.
10. Sposob podderzhaniya i regulirovaniya koncentracii galogenovodoroda v gazorazryadnoj trubke lazera i gazorazryadnaya trubka lazera na parah galogenidov metallov: Pat. 2295811. Russia, H01S 3/22. Andrienko O.S., Suhanov V.B., Troickij V.O., Shestakov D.Yu., Shiyanov D.V.; IOA SO RAN. N 2004132665/28; Zayavl. 09.11.2004; Opubl. 20.03.2007. Byul. N 8.
11. Kozlov M.G. Spektry pogloshcheniya parov metallov v vakuumnom ul'trafiolete. M.: Nauka, 1981. 264 p.