Vol. 38, issue 02, article # 9

Abouellail Abdelmeguid Fathy Ahmed., Lugovskoy A. A., Trigub M. V. Optical inspection of surfaces under large strains using digital image correlation. // Optika Atmosfery i Okeana. 2025. V. 38. No. 02. P. 146–151. DOI: 10.15372/AOO20250209 [in Russian].
Copy the reference to clipboard

Abstract:

Surface inspection under large strains is a critical problem for both civil and mechanical engineering. Optical techniques can be used for its solution. Digital image correlation (DIC) is one of these promising optical techniques. It is used to measure displacement and strain fields without contact with the specimen surface. Input parameters can directly affect the strain field calculation accuracy. The correlation method is a key parameter in strain field calculation based on DIC, especially under large strains. In this work, three spatial and incremental methods are tested; their accuracy and applicability are estimated; their advantages and drawbacks are discussed. The results can be useful for the developments of means for non-destructive testing.

Keywords:

Digital Image Correlation, optical inspection of surfaces, large strain, incremental calculation, decorrelation problem

Figures:

References:

1. Viotti M.R., Albertazzi A. Robust speckle metrology techniques for stress analysis and NDT // J. Soc. Photo-Opt. Instrum. Eng. 2014. V. PM251. DOI: 10.1117/3.1002651.
2. Lyubutin P.S., Panin S.V., Titkov V.V., Eremin A.V., Sunder R. Razvitie metoda korrelyatsii tsifrovykh izobrazhenii dlya izucheniya protsessov deformatsii i razrusheniya konstruktsionnykh materialov // Vestn. Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo un-ta. Mekhanika. 2019. N 1. P. 88–109.
3. Sutton M.A., Li N., Garcia D., Cornille N., Orteu J.J., McNeill S.R., Schreier H.W., Li X., Reynolds A.P. Scanning electron microscopy for quantitative small and large deformation measurements Part II: Experimental validation for magnifications from 200 to 10,000 // Exp. Mech. 2007. V. 47, N 6. P. 789–804. DOI: 10.1007/s11340-007-9041-0.
4. Pan B. Digital image correlation for surface deformation measurement: Historical developments, recent advances and future goals // Meas. Sci. Technol. 2018. V. 29, N 8. DOI: 10.1088/1361-6501/aac55b.
5. Orteu J.J., Rotrou Y., Sentenac T., Robert L. An innovative method for 3-D shape, strain and temperature full-field measurement using a single type of camera: Principle and preliminary results // Exp. Mech. 2008. V. 48, N 2. P. 163–179. DOI: 10.1007/s11340-007-9071-7.
6. Louis L., Wong T.F., Baud P. Imaging strain localization by X-ray radiography and digital image correlation: Deformation bands in Rothbach sandstone // J. Struct. Geol. 2007. V. 29, N 1. P. 129–140. DOI: 10.1016/j.jsg.2006.07.015.
7. Vendroux G., Schmidt N., Knauss W.G. Submicron deformation field measurements: Part 3. Demonstration of deformation determinations // Exp. Mech. 1998. V. 38, N 3. P. 154–160. DOI: 10.1007/bf02325737.
8. Sun Y., Pang J.H.L. AFM image reconstruction for deformation measurements by digital image correlation // Nanotechnology. 2006. V. 933. DOI: 10.1088/0957-4484/17/4/016.
9. de Deus Filho J.C.A., da Silva Nunes L.C., Xavier J.M.C. iCorrVision-2D: An integrated python-based open-source Digital Image Correlation software for in-plane measurements (Part 1) // SoftwareX. 2022. V. 19. P. 101131. DOI: 10.1016/j.softx.2022.101131.
10. Pan B., Qian K., Xie H., Asundi A. Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review // Meas. Sci. Technol. 2009. V. 20, N 6. DOI: 10.1088/0957-0233/20/6/062001.
11. Panin S.V., Titkov V.V., Lyubutin P.S. Vliyanie velichiny shaga setki vektornogo polya peremeshchenii na otsenku deformatsii v metode korrelyatsii tsifrovykh izobrazhenii // Prikladnaya mekhanika i tekhnicheskaya fizika. 2017. V. 58, N 3. P. 57–67.
12. Yang R., Li Y., Zeng D., Guo P. Deep DIC: Deep learning-based digital image correlation for end-to-end displacement and strain measurement // J. Mater. Process. Technol. 2022. V. 302. P. 117474. DOI: 10.1016/j.jmatprotec.2021.117474.
13. Bing P.D.W., Xia Y. Incremental calculation for large deformation measurement using reliability-guided digital image correlation // Opt. Lasers Eng. 2012. V. 50, N 4. P. 586–592. DOI: 10.1016/j.optlaseng.2011.05.005.
14. Bigger R., Blaysat B., Boo C., Grewer M., Hu J., Jones A., Klein M., Lava P., Pankow M., Raghavan K., Reu P., Schmidt T., Siebert T., Simonsen M., Trim A., Turner D., Vieira A., Weikert T. A good practices guide for digital image correlation // Int. Digit. Image Correl. Soc. 2018. P. 1–94. URL: http://idics.org/guide/. DOI: 10.32720/IDICS/GPG.ED1.
15. Reu P.L., Toussaint E., Jones E., Bruck H.A., Iadicola M., Balcaen R., Turner D.Z., Siebert T., Lava P., Simonsen M. DIC challenge: Developing images and guidelines for evaluating accuracy and resolution of 2D analyses // Exp. Mech. 2018. V. 58, N 7. DOI: 10.1007/s11340-017-0349-0.
16. Dong Y.L., Pan B. A Review of speckle pattern fabrication and assessment for digital image correlation // Exp. Mech. 2017. V. 57, N 8. P. 1161–1181. DOI: 10.1007/s11340-017-0283-1.
17. Brillaud J., Lagattu F. Limits and possibilities of laser speckle and white-light image-correlation methods : Theory and experiments // Appl. Opt. 2002. V. 41, N 31. P. 6603–6613. DOI: 10.1364/AO.41.006603.