Vol. 38, issue 02, article # 5

Skorokhodov A. V., Kuriyanovich K. V. Variability of multilayer cloud structure over Western and Eastern Siberia in summer and winter in 2006–2023 based on CALIPSO data. // Optika Atmosfery i Okeana. 2025. V. 38. No. 02. P. 115–124. DOI: 10.15372/AOO20250205 [in Russian].
Copy the reference to clipboard

Abstract:

One of the indicators of ongoing climate change is the evolution of cloud regimes, both in individual regions and globally. Within this framework, the long-term variability in the structure of multilayered clouds with an optical thickness of less than 15 over Western and Eastern Siberia during the summer and winter seasons from 2006 to 2023 in daytime conditions is estimated based on CALIOP lidar data (CALIPSO satellite). Multilayering refers to the presence of clouds in several levels at the same time located under each other with gaps between them. The applied methodology is based on the use of cloud classification results from daily CALIOP lidar measurements, calculation of seasonal recurrence values for each combination of cloud types in multilayer structure, deriving time series, determining trends, and evaluating their parameters. It was found that the fractions of clouds with different numbers of layers over both regions did not significantly change during the period under study. In Western Siberia, the proportion of double-layer clouds is 68% in summer and 71% in winter, while in Eastern Siberia, 71 and 75%, respectively. The fraction of three-layer clouds reaches 27% in summer and 25% in winter in Western Siberia and 26% and 23% in Eastern Siberia. The fractions of four- and five-layer clouds do not exceed 5% in both regions together and are almost the same in the two seasons. The most frequent combinations in the multilayer clouds over Western and Eastern Siberia were determined. Estimates of linear trends in the fraction of the most frequent variations in multilayer clouds over the period under study are presented. The results can contribute to improving the accuracy of climate models and radiative transfer estimates.

Keywords:

time series, Western Siberia, Eastern Siberia, long-term trend, cloud classification, multilayer cloud cover, satellite data

Figures:

References:

1. Astafurov V.G., Skorokhodov A.V., Kuryanovich K.V. Izmenchivost' harakteristik odnoslojnyh oblachnyh polej nad Zapadnoj Sibir'yu v letnee vremya za period s 2001 po 2019 year po sputnikovym dannym MODIS // Optika atmosf. i okeana. 2023. V. 36, N 3. P. 188–195. DOI: 10.15372/AOO20230304; Astafurov V.G., Skorokhodov A.V., Kuryanovich K.V. Variability of parameters of single-layer cloud fields over Western Siberia in summer for the period from 2001 to 2019 according to MODIS data // Atmos. Ocean. Opt. 2023. V. 36, N 4. P. 329–336.
2. Astafurov V.G., Skorokhodov A.V., Kuryanovich K.V. Izmenchivost' harakteristik odnoslojnyh oblachnyh polej nad Zapadnoj Sibir'yu v zimnij period 2001–2019 years po dannym MODIS // Optika atmosf. i okeana. 2024. V. 37, N 1. P. 54–60. DOI: 10.15372/AOO20240107; Astafurov V.G., Skorokhodov A.V., Kuryanovich K.V. Variability of parameters of single-layer cloud fields over Western Siberia in winter in 2001–2019 according to MODIS data // Atmos. Ocean. Opt. 2024. V. 37, N 2. P. 211–219.
3. Gorbatenko V.P., Ippolitov I.I., Podnebesnyh N.V. Cirkulyaciya atmosfery nad Zapadnoj Sibir'yu v 1976–2004 years // Meteorol. i gidrol. 2007. N 5. P. 28–36.
4. Tunaev E.L., Gorbatenko V.P., Podnebesnyh N.V. Osobennosti ciklogeneza nad territoriej zapadnoj Sibiri za period 1976–2015 years // Trudy gidrometeorologicheskogo nauchno-issledovatel'skogo centra Rossijskoj Federacii. 2017. N 364. P. 81–92.
5. Kharyutkina E.V., Loginov S.V., Usova E.I., Martynova YU.V. Tendencii izmeneniya ekstremal'nosti klimata Zapadnoj Sibiri v konce XX – nachale XXI years // Fundam. i prikl. klimatol. 2019. V. 2. P. 45−65. DOI: 10.21513/2410-8758-2019-2-45-65.
6. The Earth Observator // Land Surface Temperature Anomaly. 2000–2024. URL: https://earthobservatory.nasa.gov/global-maps/MOD_LSTAD_M (last access: 18.11.2024).
7. Jing X., Zhang H., Peng J., Li J., Barker H.W. Cloud overlapping parameter obtained from CloudSat/CALIPSO dataset and its application in AGCM with McICA scheme // Atmos. Res. 2016. V. 170. P. 52−65. DOI: 10.1016/j.atmosres.2015.11.007 0169-8095.
8. Johansson E., Devasthale A., Ekman A.M.L., Tjernström M., L'Ecuyer T. How does cloud overlap affect the radiative heating in the tropical upper troposphere/lower stratosphere? // Geophys. Res. Lett. 2019. V. 46. P. 5623–5631. DOI: 10.1029/019GL082602.
9. Luo H., Quaas J., Han Y. Examining cloud vertical structure and radiative effects from satellite retrievals and evaluation of CMIP6 scenarios // Atmos. Chem. Phys. 2023. V. 23, N 14. P. 8169–8186. DOI: 10.5194/acp-23-8169-2023.
10. Oreopoulos L., Cho N., Lee D. New insights about cloud vertical structure from CloudSat and CALIPSO observations // J. Geophys. Res.: Atmos. 2017. V. 122. P. 9280–9300. DOI: 10.1002/2017JD026629.
11. Vremennye metodicheskie ukazaniya po ispol'zovaniyu informacii doplerovskogo meteorologicheskogo radiolokatora DMRL-S v sinopticheskoj praktike / pod red. Yu.B. Pavlyukova, N.I. Serebryannik, S.G. Belikova i dr. M.: Rosgidromet, 2017. 127 p.
12. Kokhanenko G.P., Balin Y.S., Klemasheva M.G., Nasonov S.V., Novoselov M.M., Penner I.E., Samoilova S.V. Scanning polarization lidar LOSA-M3: Opportunity for research of crystalline particle orientation in the clouds of upper layers // Atmos. Meas. Tech. 2020. V. 13, N 3. P. 1113–1127. DOI: 10.5194/amt-13-1113-2020.
13. Chernyh I.V., Alduhov O.A. Ocenki chisla oblachnyh sloev po dannym radiozondirovaniya atmosfery za 1964–2014 years na rossijskih stanciyah // Meteorol. i gidrol. 2018. N 3. P. 29–39.
14. Chernyh I.V., Alduhov O.A. Dolgoperiodnye ocenki chisla oblachnyh sloev po dannym radiozondirovaniya atmosfery za 1964–2017 years v raznyh shirotnyh zonah // Meteorol. i gidrol. 2020. N 4. P. 18–32.
15. Arking A., Childs J.D. Retrieval of cloud cover parameters from multispectral satellite images // J. Appl. Meteorol. Climatol. 1985. V. 24, N 4. P. 322–333. DOI: 10.1175/1520-0450(1985)024<0322:ROCCPF>2.0.CO;2.
16. Min M., Li J., Wang F., Liu Z., Menzel W.P. Retrieval of cloud top properties from advanced geostationary satellite imager measurements based on machine learning algorithms // Remote Sens. Environ. 2020. V. 239. DOI: 10.1016/j.rse.2019.111616.
17. Liu C.Y., Chiu C.H., Lin P.H., Min M. Comparison of cloud-top property retrievals from Advanced Himawari Imager, MODIS, CloudSat/CPR, CALIPSO/CALIOP and radiosonde // J. Geophys. Res.: Atmospheres. 2020. V. 125(15). DOI: 10.1029/2020JD032683.
18. Zakhvatkina N., Smirnov V., Bychkova I. Satellite SAR data-based sea ice classification: An overview // Geosci. 2019. V. 9, N 4. DOI: 10.3390/geosciences9040152.
19. Tanelli S., Durden S., Im E., Pak K., Reinke D.G., Partain P., Haynes J., Marchand R. CloudSat's Cloud Profiling Radar after two years in orbit: Performance, calibration, and processing // IEEE Trans. Geosci. Remote Sens. 2008. V. 46, N 11. P. 3560–3573. DOI: 10.1109/TGRS.2008.2002030.
20. Winker D.M., Vaughan M.A., Omar A., Hu Y., Powell K.A. Overview of the CALIPSO mission and CALIOP data processing algorithms // J. Atmos. Ocean. Technol. 2009. V. 26. P. 2310–2323. DOI: 10.1175/2009JTECHA1281.1.
21. Stubenrauch C.J., Cros S., Guignard A., Lamquin N. A 6-year global cloud climatology from the Atmospheric InfraRed Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSat // Atmos. Chem. Phys. 2010. V. 10. P. 7197–7214. DOI: 10.5194/acp-10-7197-2010.
22. Rossow W.B., Zhang Y. Evaluation of a statistical model of cloud vertical structure using combined CloudSat and CALIPSO cloud layer profiles // J. Clim. V. 23, N 24. P. 6641–6653. DOI: 10.1175/2010JCLI3734.1.
23. Koffi B., Schulz M., Bréon F.-M., Griesfeller J., Winker D., Balkanski Y., Bauer S., Berntsen T., Chin M., Collins W.D., Dentener F., Diehl T., Easter R., Ghan S., Ginoux P., Gong S., Horowitz L.W., Iversen T., Kirkevåg A., Koch D., Krol M., Myhre G., Stier Ph., Takemura T. Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results // J. Geophys. Res. 2012. V. 117. DOI: 10.1029/2011JD016858.
24. Li J., Huang J., Stamnes K., Wang T., Lv Q., Jin H.A global survey of cloud overlap based on CALIPSO and CloudSat measurements // Atmos. Chem. Phys. 2015. V. 15, N 1. P. 519–536. DOI: 10.5194/acp-15-519-2015.
25. Li Q., Groß S. Satellite observations of seasonality and long-term trends in cirrus cloud properties over Europe: Investigation of possible aviation impacts // Atmos. Chem. Phys. 2022. V. 22. P. 15963–15980. DOI: 10.5194/acp-22-15963-2022.
26. Song Q., Zhang Z., Yu H., Ginoux P., Shen J. Global dust optical depth climatology derived from CALIOP and MODIS aerosol retrievals on decadal timescales: Regional and interannual variability // Atmos. Chem. Phys. 2021. V. 21. P. 13369–13395. DOI: 10.5194/acp-21-13369-2021.
27. Portella B.M., Barbosa H.M.J. Climatology and trends of cirrus geometrical and optical properties in the Amazon region from 7-yr of CALIPSO observations // Atmos. Res. 2024. V. 299. DOI: 10.1016/j.atmosres.2023. 107167.
28. Skorokhodov A.V., Pustovalov K.N., Kharyutkina E.V., Astafurov V.G. Vosstanovlenie vysoty nizhnej granicy oblakov po sputnikovym dannym MODIS s pomoshch'yu samoorganizuyushchihsya nejronnyh setej // Optika atmosf. i okeana. 2023. V. 36, N 8. P. 670–680. DOI: 10.15372/AOO20230807; Skorokhodov A.V., Pustovalov K.N., Kharyutkina E.V., Astafurov V.G. Cloud-base height retrieval From MODIS satellite data based on self-organizing neural networks // Atmos. Ocean. Opt. 2023. V. 36, N 6. P. 723–734.
29. Wang Z. CloudSat 2B-CLDCLASS-LIDAR product process description and interface control document. Colorado: Colorado State University, 2019. 59 p.
30. Oblaka i oblachnaya atmosfera: spravochnik / pod red. I.P. Mazina, A.H. Hrgiana. L.: Gidrometeoizdat, 1989. 647 p.
31. Astafurov V.G., Skorohodov A.V., Kur'yanovich K.V. Statisticheskie modeli harakteristik oblachnosti nad Zapadnoj Sibir'yu v letnij period po dannym MODIS // Meteorol. i gidrol. 2021. N 11. P. 23–38.
32. Wehr T., Kubota T., Tzeremes G., Wallace K., Nakatsuka H., Ohno Y., Koopman R., Rusli S., Kikuchi M., Eisinger M., Tanaka T., Taga M., Deghaye P., Tomita E., Bernaerts D. The EarthCARE mission–science and system overview // Atmos. Meas. Tech. 2023. V. 16, N 15. P. 3581–3608. DOI: 10.5194/amt-16-3581-2023.
33. Loranty M.M., Heather D.A., Kropp H., Talucci A.C., Webb E.E. Siberian ecosystems as drivers of cryospheric climate feedbacks in the terrestrial Arctic // Front. Clim. 2021. V. 3. DOI: 10.3389/fclim.2021.730943.
34. Martynova Y.V., Voropay N.N., Matyukhina A.A. Variability of temporal characteristics of snow cover in Siberia on ground-based data // Environ. Dyn. Glob. Clim. Change. 2023. V. 14, N 3. P. 181–197. DOI: 10.18822/edgcc625771.
35. Vaughan M.A., Winker D.M., Powell D.A. CALIOP algorithm theoretical basis document. Part 2: Feature detection and layer properties algorithms. Hampton: SAIC, 2005. 87 p.
36. Rossow W.B., Mosher F., Kinsella E., Arking A., Desbois M., Harrison E., Minnis P., Ruprecht E., Seze G., Simmer C., Smith E. ISCCP cloud algorithm intercomparison // J. Appl. Meteorol. Climatol. 1985. V. 24, N 9. P. 877–903. DOI: 10.1175/1520-0450(1985) 024<0887:ICAI>2.0.CO;2.
37. Doklad ob osobennostyah klimata na territorii Rossijskoj Federacii za 2012 year. M.: Izd-vo Rosgidrometa, 2013. 86 p.
38. Doklad ob osobennostyah klimata na territorii Rossijskoj Federacii za 2016 year. M.: Izd-vo Rosgidrometa, 2017. 70 p.
39. Doklad ob osobennostyah klimata na territorii Rossijskoj Federacii za 2020 year. M.: Izd-vo Rosgidrometa, 2021. 104 p.
40. Doklad ob osobennostyah klimata na territorii Rossijskoj Federacii za 2022 year. M.: Izd-vo Rosgidrometa, 2023. 108 p.
41. Doklad ob osobennostyah klimata na territorii Rossijskoj Federacii za 2023 year. M.: Izd-vo Rosgidrometa, 2024. 112 p.