Vol. 38, issue 02, article # 11

Bobrovnikov S. M., Bol'basova L. A., Gorlov E. V., Zharkov V. I., Lukin V. P. Comparative analysis of the excitation scheme efficiency of resonance and cascade fluorescence of mesosphere atoms for the creation of laser guide stars. Part II. Iron atoms. // Optika Atmosfery i Okeana. 2025. V. 38. No. 02. P. 157–161. DOI: 10.15372/AOO20250211 [in Russian].
Copy the reference to clipboard

Abstract:

A laser guide star is an essential part of the adaptive optics system of a ground-based optical telescope. The main limitation of sodium laser guide stars, formed on the basis of the resonant fluorescence of mesospheric sodium atoms, is the low brightness of the LGS. To estimate a possibility of creating LGS based on the fluorescence of other metals in the mesosphere, the efficiency of excitation schemes for atoms of iron are calculated. The relative backscattering flux of fluorescence for transitions of iron atoms is calculated taking into account the content of the atoms in the mesosphere and the transmission of the atmosphere. The comparison with the results for sodium, nickel, and potassium atoms is made. Our results can be used for the development of adaptive optics systems with artificial reference sources for ground-based telescopes and mesospheric lidars.

Keywords:

adaptive optics, laser guide star, fluorescence, mesosphere, lidar

Figures:

References:

1. Bobrovnikov S.M., Bol'basova L.A., Gorlov E.V., Zharkov V.I., Lukin V.P. Sravnitel'nyj analiz effektivnosti skhem vozbuzhdeniya rezonansnoj i kaskadnoj fluorescencii atomov mezosfery dlya sozdaniya lazernyh opornyh zvezd. Part I. Atomy kaliya i nikelya // Optika atmosf. i okeana. 2025. V. 38, N 2. P. 152–156.
2. Wang K., Wang Z., Wu Y., Du L., Zheng H., Jiao J., Wu F., Xun Y., Xia Y. Lidar observations of the Fe layer in the mesopause and lower thermosphere over Beijing (40.5° N, 116.0° E) and Mohe (53.5° N, 122.4° E) // Atmosphere. 2024. V. 15. P. 344. DOI: 10.3390/+atmos15030344.
3. Feng W., Marsh D.R., Chipperfield M.P., Janches D., Höffner J., Yi F., Plane J.M.C. A global atmospheric model of meteoric iron // J. Geophys. Res.: Atmos. 2013. V. 118. P. 9456–9474. DOI: 10.1002/jgrd.50708.
4. Plane J.M.C., Feng W., Dawkins E.C.M. The mesosphere and metals: Chemistry and changes // Chem. Rev. 2015. V. 115. P. 4497–4541. DOI: 10.1021/cr500501m.
5. NIST Atomic Spectra Database. URL: https://www.nist.gov/pml/atomic-spectra-database.
6. Wizinowich P.L. US Adaptive Optics Roadmap to Achieve Astro2020 // Proc. SPIE. 2024. V. 130964J. DOI: 10.1117/12.3025881.
7. Bobrovnikov S.M., Bol'basova L.A., Gorlov E.V., Zharkov V.I., Lukin V.P. Sravnenie effektivnosti skhem vozbuzhdeniya atomov natriya dlya sozdaniya monohromaticheskih i polihromaticheskih lazernyh opornyh zvezd // Kvant. elektron. 2024. V. 54, N 2. P. 67–76.
8. Yue X., Zhou Q., Raizada S., Tepley C., Friedman J. Relationship between mesospheric Na and Fe layers from simultaneous and common-volume lidar observations at Arecibo // J. Geophys. Res.: Atmos. 2013. V. 118. P. 905–916. DOI: 10.1002/jgrd.50148.