Vol. 38, issue 02, article # 1

Lavrent'ev N. A., Rodimova O. B., Fazliev A. Z. On the spectral behavior of “unidentified” continious absorption in 8800 and 10600 cm-1 H2O bands. // Optika Atmosfery i Okeana. 2025. V. 38. No. 02. P. 87–92. DOI: 10.15372/AOO20250201 [in Russian].
Copy the reference to clipboard

Abstract:

The parts of the water vapor continuum absorption conditioned by different physical mechanisms are investigated. The difference between the water vapor continuum absorption calculated according to the asymptotic line wing theory and that found from experiment is the sum of absorption by stable dimers and absorption due to some other absorbing objects. This “unidentified” absorption was found for intervals centered at 8800 and 10600 cm-1. The spectral behavior of the “unidentified” absorption turned out to be similar to that obtained in the case of modeling the continuum absorption by H2O dimers through the equilibrium constants of the corresponding reactions. The difference in the unidentified absorption curves found by the two methods can be considered a lower limit of absorption by the monomer wings. Among the graphs available in GrafOnto information system, graphs were found that were qualitatively similar to the unidentified absorption. The results can be considered encouraging, but not final, since the system contains only a limited set of substances.

Keywords:

IR absorption, water vapor, dimers, line wings, the GrafOnto information system

Figures:

References:

1. Elsasser W.M. Note on atmospheric absorption caused by the rotational water band // Phys. Rev. 1938. V. 53, N 9. P. 768. DOI: 10.1103/PhysRev.53.768.
2. Nesmelova L.I., Tvorogov S.D. O koeffitsiente izlucheniya atmosfernykh gazov // Izv. AN SSSR. Fiz. atmosf. i okeana. 1973. V. 9, N 11. P. 1209–1212.
3. Roach W.T., Goody W.M. Absorption and emission in the atmospheric window from 770 to 1 250 cm-1 // Q. J. Roy. Meteorol. Soc. 1958. V. 84. P. 319–331. DOI: 10.1002/qj.49708436203.
4. Viktorova A.A., Zhevakin S.A. Dimer vodyanogo para i ego spektr // Dokl. AN SSSR. 1966. V. 171, N 4. P. 833–836.
5. Viktorova A.A., Zhevakin S.A. Pogloshchenie mikroradiovoln v vozdukhe dimerami vodyanogo para // Dokl. AN SSSR. 1966. V. 171, N 5. P. 1061–1064.
6. Penner S.S., Varanasi P. Spectral absorption coefficients in the rotation spectrum of water vapor // J. Quant. Spectrosc. Radiat. Transfer. 1967. V. 7, N 4. P. 687–690. DOI: 10.1016/0022-4073(67)90024-6.
7. Varanasi P., Chou S., Penner S.S. Absorption coefficients for water vapor in the 600–1000 cm-1 region // J. Quant. Spectrosc. Radiat. Transfer. 1968. V. 8. P. 1537–1541. DOI: 10.1016/0022-4073(68)90090-3.
8. Rosenkranz P.W. Pressure broadening of rotational bands. I. A statistical theory // J. Chem. Phys. 1985. V. 83, N 12. P. 6139–6144. DOI: 10.1063/1.449607.
9. Rosenkranz P.W. Pressure broadening of rotational bands. II. Water vapor from 300 to 1100 cm-1 // J. Chem. Phys. 1987. V. 87. P. 163–170. DOI: 10.1063/1.453739.
10. Ma Q., Tipping R.H. A far wing line shape theory and its application to the water continuum // J. Chem. Phys. 1991. V. 95. P. 6290–6301. DOI: 10.1063/1.1525459.
11. Ma Q., Tipping R.H. The frequency detuning correction and the asymmetry of line shapes: The far wings of H2O–H2O // J. Chem. Phys. 2002. V. 116. P. 4102–4115. DOI: 10.1063/1.1436115.
12. Ma Q., Tipping R.H., Leforestier С. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines // J. Chem. Phys. 2008. V. 128, N 12. P. 124313-1–124313-17. DOI: 10.1063/1.2839604.
13. Gordov E.P., Tvorogov S.D. Metod poluklassicheskogo predstavleniya kvantovoi teorii. Novosibirsk: Nauka, 1984. 167 p.
14. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Kontur spektral'noi linii i mezhmolekulyarnoe vzaimodeistvie. Novosibirsk: Nauka, 1986. 216 p.
15. Tvorogov S.D., Rodimova O.B. Stolknovitel'nyi kontur spektral'nykh linii. Tomsk: Izd-vo IOA SO RAN, 2013. 196 p.
16. Stogryn D.E., Hirshfelder J.O. Contribution of bound, metastable and free molecules to the second virial coefficients and some properties of double molecules // J. Chem. Phys. 1959. V. 31, N 6. P. 1531–1545. DOI: 10.1063/1.1730649.
17. Ptashnik I.V., Shine K.P., Vigasin A.A. Water vapour self-continuum and water dimers: 1. Analysis of recent work // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1286–1303. DOI: 10.1016/J.JQSRT.2011.01.012.
18. Hartmann J-M., Ha Tran, Armante R., Boulet C., Campargue A., Forget F., Gianfrani L., Gordon I., Guerlet S., Gustafsson M., Hodges J.T., Kassi S., Lisak D., Thibault F., Toon G.C. Recent advances in collisional effects on spectra of molecular gases and their practical consequences // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 213. P. 178–227. DOI: 10.1016/j.jqsrt.2018.03.016.
19. Hoang P.N.M., Joubert P., Robert D. Speed-dependent line-shape models analysis from molecular dynamics simulations: The collision regime // Phys. Rev. A. 2002. V. 65. P. 01257. DOI: 10.1103/PhysRevA.65.012507.
20. Ivanov S.V. Quasi-bound complexes in collisions of different linear molecules: Classical trajectory study of their manifestations in rotational relaxation and spectral line broadening // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 177. P. 269–282. DOI: 10.1016/j.jqsrt.2016.01.034.
21. Serov E.A., Odintsova T.A., Tretyakov M.Yu., Semenov V.E. On the origin of the water vapor continuum absorption within rotational and fundamental vibrational bands // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 193. P. 1–12. DOI: 10.1016/J.JQSRT.2017.02.011.
22. Ptashnik I.V., Smith K.M., Shine K.P., Newnham D.A. Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm-1: Evidence for water dimers // Q. J. R. Meteorol. Soc. 2004. V. 130. P. 2391–2408. DOI: 10.1256/qj.03.178.
23. Ptashnik I.V., Klimeshina T.E., Petrova T.M., Solodov A.A., Solodov A.M. Spectral structure of the water continuum absorption in 2.7 and 6.25 mm bands // Proc. SPIE. 2015. V. 9680. P. 9680206-1–968006-6. DOI: 10.1134/S1024856016030131.
24. Simonova A.A., Ptashnik I.V. Estimation of water dimers contribution to the water vapour continuum absorption within 0.94 and 1.13 mm bands // Proc. SPIE. 2016. V. 10035. P. 100350K-1–100350K-5. DOI: 10.1117/12.2249458.
25. Simonova A.A., Ptashnik I.V., Elsey J., McPheat R.A., Shine K.P., Smith K.M. Water vapour self-continuum in near-visible IR absorption bands: Measurements and semiempirical model of water dimer absorption // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 277. P. 107957. DOI: 10.1016/j.jqsrt.2021.107957.
26. Bogdanova Yu.V., Klimeshina T.E., Rodimova O.B. Dimernoe pogloshchenie v IK-polosakh vodyanogo para // Optika atmosf. i okeana. 2019. V. 32, N 10. P. 801–807. DOI: 10.15372/AOO20191001; Bogdanova Yu.V., Klimeshina T.E., Rodimova O.B. Dimer absorption within water vapor bands in the IR region // Atmos. Ocean. Opt. 2020. V. 33, N 2. P. 134–140.
27. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments // J. Geophys. Res. 2011. V. D116. P. 16305. DOI: 10.1029/2011JD015603.
28. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements // Phil. Transac. Roy. Soc. London Ser. A: Phys. Sci. Engin. 2012. V. 370. P. 2557–2577. DOI: 10.1098/rsta.2011.0218.
29. Tomasi C. Non-selective absorption by atmospheric water vapour at visible and near infrared wavelengths // Q. J. Roy. Meteorol. Soc. 1979. V. 105, N 446. P. 1027–1040. DOI: 10.1002/qj.49710544619.