Vol. 38, issue 01, article # 9

Romanovskii O. A., Yakovlev S. V., Sadovnikov S. A., Nevzorov A. A., Nevzorov A. V., Kharchenko O. V., Kravtsova N. S., Kistenev Yu. V. Ground-based stationary differential absorption lidars for monitoring greenhouse gases in the atmosphere. // Optika Atmosfery i Okeana. 2025. V. 38. No. 01. P. 72–84. DOI: 10.15372/AOO20250109 [in Russian].
Copy the reference to clipboard

Abstract:

An increase in the level of greenhouse gas concentrations in the atmosphere due to natural and anthropogenic impacts is currently considered a determining factor in climate change and global warming. In this regard, there is an urgent need for the development of new technologies for remote monitoring of greenhouse gases with high spatiotemporal resolution and accuracy, namely laser remote (lidar) systems, which allow, in contrast to standard contact methods of gas analysis, more accurate and informative measurements of concentrations of greenhouse gas components of the atmosphere. The characteristics and description of differential lidars for monitoring methane, carbon dioxide, water vapor, ozone, and other gas components are given. The results of the development of ground-based stationary differential absorption lidar systems for laser remote sensing of the main greenhouse gases in the atmosphere in recent 25 years have been systematized and analyzed. The review of stationary differential absorption lidars for monitoring greenhouse gases in the atmosphere can be useful to specialists in the field of developing systems for remote gas analysis of the atmosphere.

Keywords:

lidar, DIAL, greenhouse gas, atmosphere, laser sensing, greenhouse effect

References:

1. Eliseev A.V., Mohov I.I. Parnikovyi effekt // Bol'shaya rossiiskaya entsiklopediya. M., 2014. V. 25. 368 p.
2. Antropogennye izmeneniya klimata / pod red. M.I. Budyko, Yu.A. Izraelya. L.: Gidrometeoizdat, 1987. 405 p.
3. Mohov I.I. Diagnostika struktury klimaticheskoi sistemy. SPb.: Gidrometeoizdat, 1993. 271 p.
4. IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change / S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (eds.). Cambridge, New York, USA: Cambridge University Press, 2007. 996 p.
5. Vasil’ev B.I., Mannoun U.M. IR differential-absorption lidars for ecological monitoring of the environment // Quant. Electron. 2006. V. 36, N 9. P. 801–820. DOI: 10.1070/QE2006v036n09ABEH006577.
6. Bobrovnikov S.M., Matvienko G.G., Romanovskii O.A., Serikov I.B., Suhanov A.YA. Lidarnyi spektroskopicheskii gazoanaliz atmosfery. Tomsk: Izd-vo IOA SO RAN, 2014. 510 p.
7. Balin Yu.S., Borovoi A.G., Burlakov V.D., Dolgii S.I., Klemasheva M.G., Konoshonkin A.V., Kohanenko G.P., Kustova N.V., Marichev V.N., Matvienko G.G., Nevzorov A.A., Nevzorov A.V., Penner I.E., Romanovskii O.A., Samoilova S.V., Suhanov A.YA., Harchenko O.V., Shishko V.A. Lidarnyi monitoring oblachnyh i aerozol'nyh polei, malyh gazovyh sostavlyayushchih i meteoparametrov atmosfery / pod red. G.G. Matvienko. Tomsk: Izd-vo IOA SO RAN, 2015. 450 p.
8. Boreysho A.S., Kim A.A., Konyaev M.A., Luginya V.S., Morozov A.V., Orlov A.E. Modern lidar systems for atmosphere remote sensing // Photon. Rus. 2019. V. 13, N 7(55). P. 648–657. DOI: 10.22184/1992-7296.FRos.2019.13.7.648.657.
9. Kistenev Y.V., Cuisset A., Romanovskii O.A., Zherdeva A.V. Исследование малых газовых составляющих на границе «водная поверхность – атмосфера» с использованием средств дистанционного и локального лазерного ИК-газоанализа. Обзор // Оптика атмосф. и океана. 2022. V. 35, N 10. P. 799–810. DOI: 10.15372/AOO20221002; Kistenev Y.V., Cuisset A., Romanovskii O.A., Zherdeva A.V. A study of trace atmospheric gases at the water – atmosphere interface using remote and local IR laser gas analysis: A review // Atmos. Ocean. Opt. 2022. V. 35, N S1. P. S17–S29.
10. Molebny V., McManamon P.F., Steinvall O., Kobayashi T., Chen W. Laser radar: Historical prospective – from the East to the West // Opt. Eng. 2016. V. 56, N 3. P. 031220. DOI: 10.1117/1.OE.56.3.031220.
11. Li J., Yu Z., Du Z., Ji Y., Liu C. Standoff chemical detection using laser absorption spectroscopy: A review // Remote Sens.. 2020. V. 12. P. 2771. DOI: 10.3390/rs12172771.
12. Romanovskii O.A., Kharchenko O.V., Yakovlev S.V. Methodological aspects of lidar ranging of trace gases in the atmosphere by differential absorption // J. Appl. Spectrosc. 2012. V. 79. P. 793–800. DOI: 10.1007/s10812-012-9673-4.
13. Singh U.N., Refaat T.F., Petros M., Ismail S. Evaluation of 2-mm pulsed integrated path differential absorption lidar for carbon dioxide measurement – technology developments, measurements, and path to space // IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018. V. 11, N 6. P. 2059–2067. DOI: 10.1109/JSTARS.2017.2777453.
14. Feng Y., Chang J., Chen X., Zhang Q., Wang Z., Sun J., Zhang Z. Application of TDM and FDM methods in TDLAS based multi-gas detection // Opt. Quant. Electron. 2021. V. 53, N 4. P. 1–11. DOI: 10.1007/s11082-021-02844-9.
15. Liang W., Wei G., He A., Shen H. A novel wavelength modulation spectroscopy in TDLAS // Infrared Phys. Technol. 2021. V. 114, N 33. P. 103661. DOI: 10.1016/j.infrared.2021.103661.
16. Yang H., Bu X., Song Y., Shen Y. Methane concentration measurement method in rain and fog coexisting weather based on TDLAS // Measurement. 2022. Р. 112091. DOI: 10.1016/j.measurement.2022.112091.
17. Platt U., Stutz J. Differential absorption spectroscopy // Differential Optical Absorption Spectroscopy. Berlin, Heidelberg: Springer, 2008. P. 135–158.
18. Platt U., Perner D., Paetz H.W. Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical absorption // J. Geophys. Res. 1979. V. 84, N C10. P. 6329–6335. DOI: 10.1029/JC084iC10p06329.
19. Romanovskii O., Sukhanov A., Kharchenko O., Yakovlev S., Sadovnikov S. Simulation of remote atmospheric sensing by a laser system based on optical parametric oscillator // Inform. Control Syst. 2017. V. 5. P. 71–79. DOI: 10.15217/issn1684-8853.2017.5.71.
20. Matvienko G.G., Romanovskii O.A., Sadovnikov S.A., Sukhanov A.Ya., Kharchenko O.V., Yakovlev S.V. DIAL-DOAS technique for laser sounding of the gaseous composition of the atmosphere // Proc. SPIE. V. 10035, 2016. Р. 1003558. DOI: 10.1117/12.2254779.
21. Grigorievsky V.I., Kalenov D.M., Sadovnikov V.P., Tezadov Ya.A., Elbakidze A.V. Lidar monitoring of background methane concentration in the north-east of the Moscow region // J. Radio Electron. 2023. N 11. DOI: 10.30898/1684-1719.2023.11.3.
21. Grigorievsky V.I., Kalenov D.M., Sadovnikov V.P., Tezadov Ya.A., Elbakidze A.V. Izmerenie dnevnyh, sezonnyh i godovyh variatsiy fona metana opticheskim lidarom na severo-vostoke Moskovskoi oblasti // Zhurn. radioelektroniki. 2023. N 11. DOI: 10.30898/1684-1719.2023.11.3.
22. Ayrapetyan V.S., Fomin P.A. Laser detection of explosives based on differential absorption and scattering // Opt. Laser Technol. 2018. V. 106. P. 202–208. DOI: 10.1016/j.optlastec.2018.04.001.
23. Romanovskii O.A., Sadovnikov S.A., Kharchenko O.V., Yakovlev S.V. Broadband IR lidar for gas analysis of the atmosphere // J. Appl. Spectrosc. 2018. V. 85, N 3. P. 457–461. DOI: 10.1007/s10812-018-0672-y.
24. Romanovskii O.A., Sadovnikov S.A., Kharchenko O.V., Yakovlev S.V. Near/mid-IR OPO lidar system for gas analysis of the atmosphere: simulation and measurement results // Opt. Memory Neural Networks (Information Optics). 2019. V. 28, N 1. P. 1–10. DOI: 10.3103/S1060992X19010053.
25. Romanovskii O.A., Sadovnikov S.A., Kharchenko O.V., Yakovlev S.V. Development of near/mid IR differential absorption OPO lidar system for sensing of atmospheric gases // Opt. Laser Technol. 2019. V. 116. P. 43–47. DOI: 10.1016/j.optlastec.2019.03.011.
26. Yerasi A., Tandy W.D., Emery W.J., Barton-Grimley R.A. Comparing the theoretical performances of 1.65- and 3.3-mm differential absorption lidar systems used for airborne remote sensing of natural gas leaks // J. Appl. Remote Sens. 2018. V. 12, N 2. P. 026030. DOI: 10.1117/1.JRS.12.026030.
27. Meng L., Fix A., Wirth M., Høgstedt L., Tidemand-Lichtenberg P., Pedersen C., Rodrigo P.J. Upconversion detector for range-resolved DIAL measurement of atmospheric CH4 // Opt. Express. 2018. V. 26. P. 3850–3860. DOI: 10.1364/OE.26.003850.
28. Amediek A., Ehret G., Fix A., Wirth M., Büdenbender Ch., Quatrevalet M., Kiemle Ch., Gerbig C. CHARM-F – a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions // Appl. Opt. 2017. V. 56. P. 5182–5197. DOI: 10.1364/AO.56.005182.
29. Wagner G.A., Plusquellic D.F. Ground-based, integrated path differential absorption LIDAR measurement of CO2, CH4, and H2O near 1.6 mm // Appl. Opt. 2016. V. 55. P. 6292–6310. DOI: 10.1364/AO.55.006292.
30. Grigor'evskii V.I., Sadovnikov V.P., Elbakidze A.V. Izmereniya fonovoi kontsentratsii metana distantsionnym lidarom na kilometrovyh trassah v raione Moskovskoi oblasti // Zhurn. radioelektroniki. 2021. N 9. DOI: 10.30898/1684-1719.2021.9.10.
31. Grigorievsky V.I., Tezadov Y.A. Modeling and Experimental Study of lidar resolution to determine methane concentration in the Earth’s atmosphere // Cosmic Res. 2020. V. 58. P. 330–337. DOI: 10.1134/S0010952520050020.
32. Kara O., Sweeney F., Rutkauskas M., Farrell C., Leburn C.G., Reid D.T. Open-path multi-species remote sensing with a broadband optical parametric oscillator // Opt. Express. 2019. V. 27. P. 21358–21366. DOI: 10.1364/OE.27.021358.
33. Veerabuthiran S., Razdan A.K., Jindal M.K., Sharma R.K., Sagar V. Development of 3.0–3.45 nm OPO laser based range resolved and hard-target differential absorption lidar for sensing of atmospheric methane // Opt. Laser Technol. 2015. V. 73. P. 1–5. DOI: 10.1016/j.optlastec.2015.04.007.
34. Romanovskii O.A., Sadovnikov S.A., Kharchenko O.V., Yakovlev S.V. Distantsionnyi analiz soderzhaniya metana v atmosfere IK-lidarnoi sistemoi differentsial'nogo pogloshcheniya v spektral'nom diapazone 3300–3430 nm // Optika atmosf. i okeana. 2019. V. 32, N 11. P. 896–901. DOI: 10.15372/AOO20191103; Romanovskii O.A., Sadovnikov S.A., Kharchenko O.V., Yakovlev S.V. Remote analysis of methane concentration in the atmosphere with an IR lidar system in the 3300–3430 nm spectral range // Atmos. Ocean. Opt. 2020. V. 33, N 2. P. 188–194.
35. Shibata Y., Nagasawa C., Abo M., Inoue M., Morino I., Uchino O. Comparison of CO2 vertical profiles in the lower troposphere between 1.6 mm differential absorption lidar and aircraft measurements over Tsukuba // Sensors. 2018. V. 18. P. 4064. DOI: 10.3390/s18114064.
36. Robinson I., Jack J.W., Rae C.F., Moncrieff J.B. Development of a laser for differential absorption lidar measurement of atmospheric carbon dioxide // Proc. SPIE. 2014. V. 9246. P. 92460U–92460U-6. DOI: 10.1117/12.2068023.
37. Robinson I., Jack J., Rae C., Moncrieff J. A robust optical parametric oscillator and receiver telescope for differential absorption lidar of greenhouse gases // Proc. SPIE. 2015. V. 9645. DOI: 10.1117/12.2197251.
38. Refaat T.F., Petros M., Singh U.N., Antill C., Wong T.-H., Remus R., Reithmaier K., Lee J., Bowen S., Taylor B., Welters A., Ismail S., Noe A. Airborne, direct-detection, 2-um triple-pulse IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide active remote sensing // Proc. SPIE. 2018. V. 10779. P. 1077902-1–1077902-12. DOI: 10.1117/12.2324785.
39. Lambert-Girard S., Allard M., Piché M., Babin F. Differential optical absorption spectroscopy lidar for mid-infrared gaseous measurements // Appl. Opt. 2015. V. 54, N 7. P. 1647–1656. DOI: 10.1364/AO.54.00164.
40. Høgstedt L., Fix A., Wirth M., Pedersen C., Tidemand-Lichtenberg P. Upconversion-based lidar measurements of atmospheric CO2 // Opt. Express. 2016. V. 24. P. 5152–5161. DOI: 10.1364/OE.24.005152.
41. Yue B., Yu S., Li M., Wei T., Yuan J., Zhang Z., Dong J., Jiang Y., Yang Y., Gao Z., Xia H. Local-scale horizontal CO2 flux estimation incorporating differential absorption lidar and Coherent Doppler Wind Lidar // Remote Sens. 2022. V. 14. P. 5150. DOI: 10.3390/rs14205150.
42. Sadovnikov S.A., YAkovlev S.V., Kravtsova N.S., Gerasimova M.P. Proektirovanie priemoperedayushchei chasti dvuhkanal'noi lidarnoi sistemy IK-diapazona // Vestn. SGUGiT. 2023. V. 28, N 2. P. 136–144. DOI: 10.33764/2411-1759-2023-28-2-136-144.
43. Sadovnikov S., Yakovlev S., Romanovskii O., Nevzorov A. Lidar sounding of carbon dioxide and water vapor with absorption spectroscopy techniques // E3S Web Conf. 2023. V. 383, N 04083. P. 6. DOI: 10.1051/e3sconf/202338304083.
44. Kravtsova N.S., Sadovnikov S.A., Gerasimova M.P. Trassovyi izmeritel' uglekislogo gaza // J. Agric. Environ. 2023. V. 33, N 5. DOI: 10.23649/JAE.2023.33.7.
45. Yakovlev S.V., Sadovnikov S.A., Kravtsova N.S. Kontseptsiya dvuhkanal'nogo infrakrasnogo lidara dlya monitoringa parnikovyh gazov v prizemnom sloe atmosfery // ZHurn. radioelektroniki. 2023. N 5. DOI: 10.30898/1684-1719.2023.5.9.
46. Amoruso S., Amodeo A., Armenante M., Boselli A., Mona L., Pandolfi M., Pappalardo G., Velotta R., Spinelli N., Wang X. Development of a tunable IR lidar system // Opt. Lasers Eng. 2002. V. 37, N 5. P. 521–532. DOI: 10.1016/S0143-8166(01)00115-4.
47. Newsom R.K., Turner D.D., Lehtinen R., Münkel C., Kallio J., Roininen R. Evaluation of a compact broadband differential absorption lidar for routine water vapor profiling in the atmospheric boundary layer // J. Atmos. Ocean. Technol. 2020. V. 37, N 1. P. 47–65. DOI: 10.1175/JTECH-D-18-0102.1.
48. Turner D., Löhnert U. Ground-based temperature and humidity profiling: Combining active and passive remote sensors // Atmos. Meas. Tech. 2021. V. 14. P. 3033–3048. DOI: 10.5194/amt-14-3033-2021.
49. Mariani Z., Stanton N., Whiteway J., Lehtinen R. Toronto Water Vapor Lidar Inter-Comparison Campaign // Remote Sens. 2020. V. 12, N 19. DOI: 10.3390/rs12193165.
50. Mariani Z., Hicks-Jalali S., Strawbridge K., Gwozdecky J., Crawford R.W., Casati B., Lemay F., Lehtinen R., Tuominen P. Evaluation of Arctic water vapor profile observations from a differential absorption lidar // Remote Sens. 2021. V. 13. P. 551. DOI: 10.3390/rs13040551.
51. David C., Haefele A., Keckhut P., Marchand M., Jumelet J., Leblanc T., Cenac C., Laqui C., Porteneuve J., Haeffelin M., Courcoux Y., Snels M., Viterbini M., Quatrevalet M. Evaluation of stratospheric ozone, temperature, and aerosol profiles from the LOANA lidar in Antarctica // Polar Sci. 2012. V. 6, N 3–4. P. 209–225. DOI: 10.1016/j.polar.2012.07.001.
52. Steinbrecht W., McGee T.J., Twigg L.W., Claude H., Schönenborn F., Sumnicht G.K., Silbert D. Intercomparison of stratospheric ozone and temperature profiles during the October 2005 Hohenpeißenberg Ozone Profiling Experiment (HOPE) // Atmos. Meas. Tech. 2009. V. 2, N 1. P. 125–145. DOI: 10.5194/amt-2-125-2009.
53. Portafaix T., Godin-Beekmann S., Payen G., de Mazière M., Langerock B., Fernandez S., Posny F., Cammas J.P., Metzger J.M., Bencherif H., Vigouroux C., Marquestaut N. Ozone profiles obtained by DIAL technique at Maïdo Observatory in La Reunion Island: Comparisons with ECC ozone-sondes, ground-based FTIR spectrometer and microwave radiometer measurements // The 27th International Laser Radar Conference (ILRC 27). 2016. Р. 05005 DOI: 10.1051/epjconf/201611905005.
54. Godin-Beekmann S., Song T., Heese B. Long-term DIAL monitoring of the stratospheric ozone vertical distribution // Proc. SPIE. 2003. V. 4893. P. 251–263. DOI: 10.1117/12.466698.
55. Wolfram E.A., Salvador J., D’Elia R., Casiccia C., PaesLeme N., Pazmiño A., Porteneuve J., Godin-Beekman S., Nakane H., Quel E.J. New differential absorption lidar for stratospheric ozone monitoring in Patagonia, South Argentina // Appl. Opt. 1998. V. 10, N 10. P. 104021. DOI: 10.1088/1464-4258/10/10/104021.
56. McDermid I.S., Godin S.M., Lindquist L.O. Ground-based laser DIAL system for long-term measurements of stratospheric ozone // Appl. Opt. 1990. V. 29, N 25. P. 3603–3612. DOI: 10.1364/AO.29.003603.
57. Park C.B., Nakane H., Sugimoto N., Matsui I., Sasano Y., Fujinuma Y., Ikeuchi I., Kurokawa J.-I., Furuhashi N. Algorithm improvement and validation of National Institute for Environmental Studies ozone differential absorption lidar at the Tsukuba Network for Detection of Stratospheric Change complementary station // Appl. Opt. 2006. V. 45, N 15. P. 3561–3576. DOI: 10.1364/AO.45.003561.
58. Nevzorov A.A., Nevzorov A.V., Kharchenko O., Romanovskii Y.O. Lidar complex for control of the ozonosphere over Tomsk, Russia // Atmosphere. 2024. V. 15. P. 622. DOI: 10.3390/atmos15060622.
59. Pavlov A.N., Stolyarchuk S.Yu., Shmirko K.A., Bukin O.A. Lidarnye issledovaniya izmenchivosti vertikal'nogo raspredeleniya ozona pod vliyaniem protsessov stratosferno-troposfernogo obmena v Dal'nevostochnom regione // Optika atmosf. i okeana. 2012. V. 25, N 9. P. 788–795; Pavlov A.N., Stolyarchuk S.Yu., Shmirko K.A., Bukin O.A. Lidar Measurements of variability of the vertical ozone distribution caused by the stratosphere – troposphere exchange in the Far East Region // Atmos. Ocean. Opt. 2013. V. 26, N 2. Р. 126–134.
60. Hassler B., Petropavlovskikh I., Staehelin J., August T., Bhartia P.K., Clerbaux C., Degenstein D., Mazière M. De, Dinelli B.M., Dudhia A., Dufour G., Frith S.M., Froidevaux L., Godin-Beekmann S., Granville J., Harris N.R.P., Hoppel K., Hubert D., Kasai Y., Kurylo M.J., Kyrölä E., Lambert J.-C., Levelt P.F., McElroy C.T., McPeters R.D., Munro R., Nakajima H., Parrish A., Raspollini P., Remsberg E.E., Rosenlof K.H., Rozanov A., Sano T., Sasano Y., Shiotani M., Smit H.G.J., Stiller G., Tamminen J., Tarasick D.W., Urban J., van der A.R.J., Veefkind J.P., Vigouroux C., von Clarmann T., von Savigny C., Walker K.A., Weber M., Wild J., Zawodny J.M. Past changes in the vertical distribution of ozone – Part 1: Measurement techniques, uncertainties and availability // Atmos. Meas. Tech. 2014. V. 7, N 5. P. 1395. DOI: 10.5194/amt-7-1395-2014.
61. Nakazato M., Nagai T., Sakai T., Hirose Y. Tropospheric ozone differential-absorption lidar using stimulated Raman scattering in carbon dioxide // Appl. Opt. 2007. V. 46, N 12. P. 2269–2279. DOI: 10.1364/AO.46.002269.
62. Chen Z., Zhang J., Zhang T., Liu W., Liu J. Haze observations by simultaneous lidar and WPS in Beijing before and during APEC // Sci. China Chem. 2015. V. 58, N 9. P. 1385–1392. DOI: 10.1007/s11426-015-5467-x.
63. Seabrook J., Whiteway J. Influence of mountains on Arctic tropospheric ozone // J. Geophys. Res.: Atmos. 2016. V. 121, N 4. P. 1935–1942. DOI: 10.1002/2015JD024114.
64. Kuang S., Newchurch M.J., Burris J., Liu X. Ground-based lidar for atmospheric boundary layer ozone measurements // Appl. Opt. 2013. V. 52, N 15. P. 3557–3566. DOI: 10.1364/AO.52.003557.
65. Kuang S., Newchurch M.J., Burris J., Johnson S., Long S. Differential absorption lidar to measure subhourly variation of tropospheric ozone profiles // IEEE Trans. Geosc. Remote Sens. 2011. V. 49, N 1. P. 557–571. DOI: 10.1109/TGRS.2010.2054834.
66. Eisele H., Scheel H.E., Sladkovic R., Trickl T. High-resolution lidar measurements of stratosphere – troposphere exchange // J. Atmos. Sci. 1999. V. 56. P. 319–330. DOI: 10.1175/1520-0469(1999)056<0319:HRLMOS>2.0.CO;2.
67. Trickl T., Vogelmann H. Combined DIAL sounding of ozone, water vapour and aerosol // The 27th International Laser Radar Conference (ILRC 27). 2016. Р. 21004. DOI: 10.1051/epjconf/201611921004.
68. Uchino O., Sakai T., Nagai T., Morino I., Maki T., Deushi M., Shibata K., Kajino M., Kawasaki T., Akaho T., Takubo S., Okumura H., Arai K., Nakazato M., Matsunaga T., Yokota T., Kawakami S., Kita K., Sasano Y. DIAL measurement of lower tropospheric ozone over Saga (33.24° N, 130.29° E) // Atmos. Meas. Tech. 2014. V. 7, N 5. P. 1385–1394. DOI: 10.5194/amt-7-1385-2014.
69. Baray J.-L., Courcoux Y., Keckhut P., Portafaix T., Tulet P., Cammas J.-P., Hauchecorne A., Godin Beekmann S., De Mazière M., Hermans C., Desmet F., Sellegri K., Colomb A., Ramonet M., Sciare J., Vuillemin C., Hoareau C., Dionisi D., Duflot V., Vérèmes H., Porteneuve J., Gabarrot F., Gaudo T., Metzger J.-M., Payen G., Leclair de Bellevue J., Barthe C., Posny F., Ricaud P., Abchiche A., Delmas R. Maïdo observatory: A new high-altitude station facility at Reunion Island (21° S, 55° E) for long-term atmospheric remote sensing and in situ measurements // Atmos. Meas. Tech. 2013. V. 6, N 10. P. 2865–2877. DOI: 10.5194/amt-6-2865-2013.
70. Sullivan J.T., McGee T.J., Sumnicht G.K., Twigg L.W., Hoff R.M. A mobile differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore – Washington, D.C. region // Atmos. Meas. Tech. 2014. V. 7, N 10. P. 3529–3548. DOI: 10.5194/amt-7-3529-2014.
71. Sullivan J.T., McGee T.J., DeYoung R., Twigg L.W., Sumnicht G.K., Pliutau D., Knepp T., Carrion W. Results from the NASA GSFC and LaRC ozone lidar intercomparison: New mobile tools for atmospheric research // J. Atmos. Ocean. Technol. 2015. V. 32, N 10. P. 1779–1795. DOI: 10.1175/JTECH-D-14-00193.1.
72. Langford A.O., Senff C.J., Alvarez R.J., Banta R.M., Hardesty R.M., Parrish D.D., Ryerson T.B. Comparison between the TOPAZ airborne ozone lidar and in situ measurements during TexAQS 2006 // J. Atmos. Ocean. Tech. 2011. V. 28, N 10. P. 1243–1257. DOI: 10.1175/JTECH-D-10-05043.1.
73. Gaudel A., Ancellet G., Godin-Beekmann S. Analysis of 20 years of tropospheric ozone vertical profiles by lidar and ECC at Observatoire de Haute Provence (OHP) at 44° N, 6.7° E // Atmos. Environ. 2015. V. 113. P. 78–89. DOI: 10.1016/j.atmosenv.2015.04.028.
74. Fukuchi T., Nayuki T., Cao N., Fujii T., Nemoto K.. Mori H., Takeuchi N. Differential absorption lidar system for simultaneous measurement of O3 and NO2: System development and measurement error estimation // Proc. Opt. Eng. 2003. V. 42, N 1. P. 98–104. DOI: 10.1117/1.1525274.
75. Burlakov V.D., Dolgii S.I., Nevzorov A.A., Nevzorov A.V., Romanovskii O.A., Kharchenko O.V. Lidarnoe zondirovanie ozona v verhnei troposfere – nizhnei stratosfere: metodika i rezul'taty izmerenii // Izv. TPU. 2015. V. 326, N 9. P. 124–132.
76. Mytilinaios M., Papayannis A., Tsaknakis G. Lower-free tropospheric ozone DIAL measurements over Athens, Greece // EPJ Web of Conferences. 2018. N 176. P. 05025. DOI: 10.1051/epjconf/201817605025.
77. Dolgii S.I., Nevzorov A.A., Nevzorov A.V., Romanovskii O.A., Kharchenko O.V. Intercomparison of ozone vertical profile measurements by differential absorption lidar and IASI/MetOp satellite in the upper troposphere – lower stratosphere // Remote Sens. 2017. V. 9. P. 447. DOI: 10.3390/rs9050447.
78. Lidar dlya zondirovaniya ozona v verhnei troposfere – nizhnei stratosfere: Pat. 181160. Russia, MPK, G01W 1/00. Nevzorov A.V., Nevzorov A.A., Dolgii S.I., Romanovskii O.A.; IOA SO RAN; Zayavl. 08.12.2017; Opubl. 05.07.2018. Bul. N 19.
79. Rothe K.W., Brinkman U., Walther H. Application of tunable lasers to air pollution detection. Measurements of atmospheric NO2 concentrations by differential absorption // Appl. Phys. 1974. V. 3, N 2. P. 115–119. DOI: 10.1007/BF00884408.
80. Su J., McCormick M.P., Johnson M.S., Sullivan J.T., Newchurch M.J., Berkoff T.A., Kuang S., Gronoff G.P. Tropospheric NO2 measurements using a three-wavelength optical parametric oscillator differential absorption lidar // Atmos. Meas. Tech. 2021. V. 14. P. 4069–4082. DOI: 10.5194/amt-14-4069-2021.
81. Cheng Y., Yu J., Gong Z., Mei L. Influence of aerosol optical properties on retrieval results of NO2 mass concentration in broadband differential absorption lidar Guangxue Xuebao // Acta Optica Sinica. 2024. V. 44, N 6. P. 0601016. DOI: 10.3788/AOS231130.
83. Cheng Y., Yu J., Kong Z., Mei L. Diode-laser based field deployable continuous-wave differential absorption lidar for atmospheric NO2 monitoring. Preprint. URL: https://ssrn.com/abstract=4769659 (last access: 10.05.2024).
83. Grant W.B., Hake R.D. Remote measurement SO2 and O3 by differential technique // J. Appl. Phys. 1975. V. 46, N 5. P. 3019–3024. DOI: 10.1002/adic.200690039.
84. Gong Y., Bu L., Yang B., Farhan M. High repetition rate mid-infrared differential absorption lidar for atmospheric pollution detection // Sensors. 2020. V. 20. P. 2211. DOI: 10.3390/s20082211.
85. Ionin A.A., Klimachev Y.M., Kozlov A.Y., Kotkov A.A., Romanovskii O.A., Kharchenko O.V., Yakovlev S.V. Remote sensing of nitrous oxide and methane using emission lines of a CO overtone laser // J. Appl. Spectrosc. 2014. V. 81. P. 309–312. DOI: 10.1007/s10812-014-9928-3.
86. Ionin A.A., Kal'nitskii L.Yu., Kinyaevskii I.O., Klimachev Yu.M., Kozlov A.Yu., Kotkov A.A., Matvienko G.G., Romanovskii O.A., YAkovlev S.V. Izmerenie pogloshcheniya v zakisi azota i metane na dlinah voln izlucheniya obertonnogo CO-lazera s ispol'zovaniem topograficheskoi misheni i priemnogo teleskopa // Optika atmosf. i okeana. 2016. V. 29, N 4. P. 338–342. DOI: 10.15372/AOO20160412.