Vol. 38, issue 01, article # 7

Korshunov V. A. Two-component optical model of stratospheric aerosol and its application to interpretation of lidar measurements. // Optika Atmosfery i Okeana. 2025. V. 38. No. 01. P. 56–63. DOI: 10.15372/AOO20250107 [in Russian].
Copy the reference to clipboard

Abstract:

Biomass burning aerosol has essential effect on radiation properties of the stratosphere. Some known data about this aerosol type are referred to the cases of dense and localized in altitude aerosol layers. Optical properties of it’s background component remain unknown. The processing of two-wavelengths (355 and 532 nm) lidar measurements at Obninsk city in 2012–2023 is fulfilled to determine them. Lidar data interpretation is performed on the basis of two-component model of stratospheric aerosol proposed in this work. Along with the main component (sulfuric acid aerosol), biomass burning aerosol (brown carbon) is considered. As a result, the optical thickness of brown carbon aerosol in 10–30 km layer is estimated at ~ 0.012 and 0.0013 for extinction at 355 and 532 nm and ~ 7.1 × 10-3 и 3.5 × 10-4 for absorption at the same wavelengths. Data presented may be used in the development of advanced radiation models of the stratosphere.

Keywords:

stratospheric aerosol, lidar, biomass burning aerosol, brown carbon, aerosol optical model

References:

1. Hu Q., Goloub P., Veselovskii I., Bravo-Aranda J.-A., Popovici I.E., Podvin T., Haeffelin M., Lopatin A., Dubovik O., Pietras C., Huang X., Torres B., Chen C. Long-range-transported Canadian smoke plumes in the lower stratosphere over northern France // Atmos. Chem. Phys. 2019. V. 19. P. 1173–1193. DOI: 10.5194/acp-19-1173-2019.
2. Li Y., Dykema J., Deshler T., Keutsch F. Composition dependence of stratospheric aerosol shortwave radiative forcing in northern midlatitudes // Geophys. Res. Lett. 2021. V. 48. P. e2021GL094427. DOI: 10.1029/2021GL094427.
3. Ortiz-Amezcua P., Guerrero-Rascado J.L., Granados-Muñoz M.J., Benavent-Oltra J.A., Böckmann C., Samaras S., Stachlewska I.S., Janicka L., Baars H., Bohlmann S., Alados-Arboledas L. Microphysical characterization of long-range transported biomass burning particles from North America at three EARLINET stations // Atmos. Chem. Phys. 2017. V. 17. P. 5931–5946. DOI: 10.5194/acp-17-5931-2017.
4. Adler G., Flores J.M., Riziq A.A., Borrmann S., Rudich Y. Chemical, physical, and optical evolution of biomass burning aerosols: A case study // Atmos. Chem. Phys. 2011. V. 11. P. 1491–1503. DOI: 10.5194/acp-11-1491-2011.
5. Leem H.J., Aiona P.K., Laskin A., Laskin J., Nizkorodov S.A. Effect of solar radiation on the optical properties and molecular composition of laboratory proxies of atmospheric brown carbon // Environ. Sci. Technol. 2014. V. 48, N 17. P. 10217–10226. DOI: 10.1021/es502515r.
6. Ivanov V.N., Zubachev D.S., Korshunov V.A., Sahibgareev D.G. Setevoj lidar AK-3 dlya zondirovaniya srednej atmosfery: ustrojstvo, metody izmerenij, rezul'taty // Tr. GGO. 2020. Iss. 598. P. 155–187.
7. Korshunov V.A., Zubachev D.S. Ob opredelenii parametrov stratosfernogo aerozolya po dannym dvuhvolnovogo lidarnogo zondirovaniya // Izv. RAN. Fiz. atmosf. i okeana. 2013. V. 49, N 2. P. 196–207.
8. Deshler T., Hervig M.E., Hofmann D.J., Rosen J.M., Liley J.B. Thirty years of in situ stratospheric aerosol size distribution measurements from Laramie, Wyoming (41°N), using balloon-borne instruments // J. Geophys. Res. 2003. V. 108, N D5. DOI: 10.1029/2002JD002514.
9. Reid J.S., Koppmann R., Eck T.F., Eleuterio D.P. A review of biomass burning emissions part II: Intensive physical properties of biomass burning particles // Atmos. Chem. Phys. 2005. V. 5. P. 799–825. DOI: 10.5194/acp-5-799-2005.
10. Schuster G.L., Dubovik O., Arola A. Remote sensing of soot carbon – Part 1: Distinguishing different absorbing aerosol species // Atmos. Chem. Phys. 2016. V. 16. P. 1565–1585. DOI: 10.5194/acp-16-1565-2016.
11. Chen Y., Bond T.C. Light absorption by organic carbon from wood combustion // Atmos. Chem. Phys. 2010. V. 10. P. 1773–1787. DOI: 10.5194/acpd-9-20471-2009.
12. Schwarz J.P., Gao R.S., Fahey D.W., Thomson D.S., Watts L.A., Wilson J.C., Reeves J.M., Darbeheshti M., Baumgardner D.G., Kok G.L., Chung S.H., Schulz M., Hendricks J., Lauer A., Kärcher B., Slowik J.G., Rosenlof K.H., Thompson T.L., Langford A.O., Loewenstein M., Aikin R.C. Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere // J. Geophys. Res. 2006. V. 111. P. D16207. DOI: 10.1029/2006JD007076.
13. Kirchstetter T.W., Novakov T., Hobbs P.V. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon // J. Geophys. Res. 2004. V. 109. P. D21208. DOI: 10.1029/2004JD004999.
14. Bond T.C., Doherty S.J., Fahey D.W., Forster P.M., Berntsen T., DeAngelo B.J., Flanner M.G., Ghan S., Kärcher B., Koch D., Kinne S., Kondo Y., Quinn P.K., Sarofim M.C., Schultz M.G., Schulz M., Venkataraman C., Zhang H., Zhang S., Bellouin N., Guttikunda S.K., Hopke P.K., Jacobson M.Z., Kaiser J.W., Klimont Z., Lohmann U., Schwarz J.P., Shindell D., Storelvmo T., Warren S.G., Zender C.S. Bounding the role of black carbon in the climate system: A scientific assessment // J. Geophys. Res.: Atmos. 2013. V. 118. P. 5380–5552. DOI: 10.1002/jgrd.50171.
15. Zhang Y., Forrister H., Liu J., Dibb J., Anderson B., Schwarz J.P., Perring A.E., Jimenez J.L., Campuzano-Jost P., Wang Y., Nenes A., Weber R.J. Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere // Nat. Geosci. 2017. DOI: 10.1038/ NGEO2960.
16. Liu J., Scheuer E., Dibb J., Ziemba L.D., Thornhill K.L., Anderson B.E., Wisthaler A., Mikoviny T., Devi J.J., Bergin M., Weber R.J. Brown carbon in the continental troposphere // Geophys. Res. Lett. 2014. V. 41. P. 2191–2195. DOI: 10.1002/2013GL058976.
17. Feng Y., Ramanathan V., Kotamarthi V.R. Brown carbon: A significant atmospheric absorber of solar radiation? // Atmos. Chem. Phys. 2013. V. 13. P. 8607–8621. DOI: 10.5194/acp-13-8607-2013.
18. Schuster G.L., Dubovik O., Arola A. Remote sensing of soot carbon – Part 1: Distinguishing different absorbing aerosol species // Atmos. Chem. Phys. 2016. V. 16. P. 1565–1585. DOI: 10.5194/acp-16-1565-2016.
19. Hoffer A., Gelencsér A., Guyon P., Kiss G., Schmid O., Frank G.P., Artaxo P., Andreae M.O. Optical properties of humic-like substances (HULIS) in biomass-burning aerosols // Atmos. Chem. Phys. 2006. V. 6. P. 3563–3570. DOI: 10.5194/acpd-5-7341-2005.
20. Haarig M., Ansmann A., Baars H., Jimenez C., Veselovskii I., Engelmann R., Althausen D. Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric Canadian wildfire smoke // Atmos. Chem. Phys. 2018. V. 18. P. 11847–11861. DOI: 10.5194/acp-18-11847-2018.
21. Ohneiser K., Ansmann A., Baars H., Seifert P., Barja B., Jimenez C., Radenz M., Teisseire A., Floutsi A., Haarig M., Foth A., Chudnovsky A., Engelmann R., Zamorano F., Bühl J., Wandinger U. Smoke of extreme Australian bushfires observed in the stratosphere over Punta Arenas, Chile, in January 2020: Optical thickness, lidar ratios, and depolarization ratios at 355 and 532 nm // Atmos. Chem. Phys. 2020. V. 20. P. 8003–8015. DOI: 10.5194/acp-20-8003-2020.
22. Liu L., Mishchenko M.I. Spectrally dependent linear depolarization and lidar ratios for nonspherical smoke aerosols // Quant. Spectrosc. Radiat. Transfer. 2020. V. 248. DOI: 10.1016/j.jqsrt.2020.106953.
23. Gialitaki A., Tsekeri A., Amiridis V., Ceolato R., Paulien L., Kampouri A., Gkikas A., Solomos S., Marinou E., Haarig M., Baars H., Ansmann A., Lapyonok T., Lopatin A., Dubovik O., Groß S., Wirth M., Tsichla M., Tsikoudi I., Balis D. Is the near-spherical shape the “new black” for smoke? // Atmos. Chem. Phys. 2020. V. 20. P. 14005–14021. DOI: 10.5194/acp-20-14005-2020.
24. Korshunov V.A. Mnogokratnoe rasseyanie v peristyh oblakah i ego uchet pri interpretatsii lidarnyh izmerenij v stratosfere // Optika atmosf. i okeana. 2021. V. 34, N 12. P. 969–975. DOI: 10.15372/AOO20211207; Korshunov V.A. Multiple scattering in cirrus clouds and taking it into account when interpreting lidar measurements in the stratosphere // Atmos. Ocean. Opt. 2022. V. 35, N 2. P. 151–157.
25. Zuev V.V. Lidarnyj kontrol' stratosfery. Novosibirsk: Nauka, 2004. 306 p.
26. Bazhenov O.E., Burlakov V.D., Dolgii S.I., Nevzorov A.V. Lidar observations of aerosol disturbances of the stratosphere over Tomsk (56.5°N; 85.0°E) in volcanic activity period 2006–2011 // Int. J. Opt. 2012. V. 2012. Article ID 786295. DOI: 10.1155/2012/786295.
27. Marichev V.N., Bochkovsky D.A., Elizarov A.I. Opticheskie harakteristiki stratosfernogo aerozolya Zapadnoj Sibiri po rezul'tatam lidarnogo monitoringa v 2010–2021 years // Optika atmosf. i okeana. 2022. V. 35, N 9. P. 717–721. DOI: 10.15372/AOO20220904; Marichev V.N., Bochkovsky D.A., Elizarov A.I. Optical aerosol model of the Western Siberian stratosphere based on lidar monitoring results // Atmos. Ocean. Opt. 2022. V. 35, N S1. P. S64–S69.
28. Liu J., Scheuer E., Dibb J., Diskin G.S., Ziemba L.D., Thornhill K.L., Anderson B.E., Wisthaler A., Mikoviny T., Devi J.J., Bergin M., Perring A.E., Markovic M.Z., Schwarz J.P., Campuzano-Jost P., Day D.A., Jimenez J.L., Weber R.J. Brown carbon aerosol in the North American continental troposphere: Sources, abundance, and radiative forcing // Atmos. Chem. Phys. 2015. V. 15. P. 7841–7858. DOI: 10.5194/acp-15-7841-2015.
29. Korshunov V.A. Lidarnye nablyudeniya stratosfernogo aerozolya v g. Obninsk s 2012 po 2021 year: vliyanie vulkanicheskih izverzhenij i prirodnyh pozharov // Fundamental'naya i prikladnaya klimatologiya. 2022. V. 8, N 3. P. 31–51. DOI: 10.21513/2410-8758-2022-3-31-51.