Vol. 38, issue 01, article # 6

Kablukova E. G., Oshlakov V. G., Prigarin S. M. Simulation of polarized signal of laser navigation system by Monte Carlo method. // Optika Atmosfery i Okeana. 2025. V. 38. No. 01. P. 47–55. DOI: 10.15372/AOO20250106 [in Russian].
Copy the reference to clipboard

Abstract:

Algorithms for stochastic simulation of a polarized signal arriving at a photodetector matrix of an aircraft navigation system are developed. The Monte Carlo method is used to estimate angular distributions of Stokes parameters of radiation recorded by the receiver, and the effect of scattering of different order on the total recorded signal and its polarization degree is analyzed. Calculations of the signal intensity using linear polarization filters are performed. The constructed algorithms allow one to estimate the efficiency of the laser navigation system taking into account the polarization of radiation for various meteorological conditions and the possibility of increasing the signal contrast by using polarization filters.

Keywords:

polarized radiation, polarization degree, Stokes parameters, multiple light scattering, Monte Carlo method, laser instrumental navigation system

Figures:

References:

1. D'yachkov D.V., Zolotarev O.V. Analiz statistiki aviakatastrof na osnove issledovaniya mnojestva faktorov // Trudy Mejdunarodnoi konferentsii «Fiziko-tehnicheskaya informatika-CPT2020». ANO «Nauchno-issledovatel'skii TSentr Fiziko-tehnicheskoi informatiki». 2020. P. 289–320. DOI: 10.30987/conferencearticle_5fd755c09f2c91.06817396.
2. Oshlakov V.G., TSvyk R.Sh., Soldatov A.N., Ilyushin Ya.A. Printsipy postroeniya lazernyh luchevyh instrumental'nyh sistem orientirovaniya. Pt. 1 // Izv. vuzov. Fizika. 2013. V. 56, N 10/2. P. 84–93.
3. Kablukova E.G., Oshlakov V.G., Prigarin S.M. Stochastic simulation of a signal on a photodetector matrix of a laser navigation system // Russ. J. Numer. Anal. Math. Model. 2023. V. 38, N 1. P. 13–21. DOI: 10.1515/rnam-2023-0002.
4. Born M., Wolf E.A. Principles of Optics. Cambridge, New York: Cambridge University Press, 1999. P. 952.
5. Prigarin S.M. Chislennoe modelirovanie perenosa polyarizovannogo opticheskogo izlucheniya. Bo-Bassen: Lambert Academic Publishing, 2021. 118 p.
6. Marchuk G.I., Mihailov G.A., Nazaraliev M.A. Darbinyan R.A., Kargin B.A., Elepov B.S. Metod Monte-Karlo v atmosfernoi optike. Novosibirsk: Nauka, 1976. 280 p.
7. Mihailov G.A., Voitishek A.V. Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo. M.: Akademiya, 2006. 368 p.
8. Van de Hulst H.C. Light Scattering by Small Particles. New York: John Wiley & Sons, 1957. 470 p.
9. Hovenier J.W., van der Mee C.V.M. Testing scattering matrices: A compendium of recipes // J. Quant. Spectrosc. Radiat. Transfer. 1996. V. 55, N 5. P. 649–661. DOI: 10.1016/0022-4073(96)00008-8.
10. Oppel U.G., Czerwinski G. Multiple scattering LIDAR equation including polarization and change of wavelength // Proc. SPIE. 1998. V. 3571. P. 14–25. DOI: 10.1117/12.347604.
11. Ramella-Roman J.C., Prahl S.A., Jacques S.L. Three Monte Carlo programs of polarized light transport into scattering media: Pt. I // Opt. Express. 2005. V. 13, N 12. P. 4420–4438. DOI: 10.1364/OPEX.13.004420.
12. Dejrmendjan D. Rasseyanie elektromagnitnogo izlucheniya sfericheskimi polidispersnymi chastitsami. M.: Mir, 1971. 165 p.